等比数列与无穷级数,第1张

不是
级数是无穷数列各项的和,而且这个和是否存在(即级数是否收敛)也不一定级数收敛的充分必要条件是:limS(n)存在
而等比数列的前n项和S(n)总是存在的
例如:(1)对于等比数列{an}:1,1,…,1,…
前n项和S(n)=n,而级数1+1+…+1+…不存在
(2)对于函数序列:1,x,x^2,…,x^(n-1),…
(其中x不等于1)
S(n)=(1-x^n)/(1-x),
而当|x|<1时,级数的和函数为1/(1-x),当|x|>=1时,级数的和函数不存在

级数理论
在微积分学中基本变量是一般的连续变量 x(代表具体的变量如时间t、路程s,质量m等等),取值于这个或那个区间,极限过程也是多种多样的;在级数理论中基本变量就是离散变量n,其值为全体自然数:n=0,1,2,3,…。这里极限过程只有唯一的一个,即n无限增长,趋向无限:n→∞。这里任一函数u(n)的值u(n)=un自然形成一个序列u1,u2,u3,…,un,…;而这个序列{un}也就完全表达了函数u(n)。
一个级数(无穷级数)是由一个序列{un}经过“逐一加下去”的无限过程而产生的和数序列:
简记为u1+u2+…+un+…。通常称un为这级数的一般项,sm为其部分和,并常用缩写记号
在m无限增长的过程中,如果部分和sm趋向于一个极限s,那么就称s为级数的“和”,并写成级数。这实际上就是
如果部分和sm的极限s作为一个有限数而存在,就说级数是收敛的并以s为其和数。否则,就说这级数是发散的,没有和数。
所以,按照习惯了的极限观点,一个级数在且只在它收敛时才像一个有限和一样具有一个唯一确定的和数。级数的和数与代数中的和数的区别只在于被加项的个数是无限的。这是级数概念发展的基本出发点。
最早出现在古代的级数是几何级数(等比级数)级数,它有部分和
因而当且仅当|r|<1时收敛。
一个一般的级数,其部分和不一定具有这样简单的结构,这时首先需要直接从级数的项判断级数的和是否存在,即级数是否收敛。然后就需要考虑这级数的和,作为无限项的和,继承了或保存着有限和的哪些性质,或者有限和的某个性质在什么条件下能够传递给级数的和。这两个问题,收敛问题与性质问题,便是级数理论的基本问题。
级数收敛
级数收敛的原意是它的部分和序列收敛;所以,如果不进一步涉及级数结构的特殊性质,则级数收敛的必要充分条件不外是关于其部分和序列sm的柯西收敛原理:
于是级数的收敛问题,只在一般项是无限小量的前提下,才是值得考虑的问题。
一般说来,单纯从数量上看,级数与序列是相互确定的:sm按(1)由un确定;un按恒等式级数由sm确定。但是,在概念上,级数不同于序列:它隐含着无限次加法,意味着施行于序列的一种运算级数这种运算在有效(即收敛)的情形,给出一个“可数无限”的和数,类似于定积分的运算在有效(即可积)的情形给出一个“连续无限”的和数(即积分的值)。正是级数的这种运算特征使它不同于序列而类似于积分,而有这样类似的基本性质:这一切都是在“和数”存在──即级数收敛的前提下来考虑的。一般地,考虑级数理论的基本问题时,总是首先考虑收敛问题,然后考虑性质问题。
单调收敛性的最简单形式。

收敛与发散判断方法简单来说就是有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

收敛与发散的判断其实简单来说就是看极限存不存在,当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。

扩展资料:

注意事项:

对于全部级数都可以通用的一些主要方法有柯西收敛准则。那么有关本质是把级数来转换成数列,从而这是一个最强的判别法。

柯西收敛准则能成立的时候就有可能是级数收敛的中必要条件,然后就从数项级数的定里中进入。跟着来挖掘出其中一部分里的数列收敛判别法,然后变为余和判别法,用户一定要熟练掌控项数的特征。

经常研究项级数的收敛办法:接着就是交错级数里的Leibniz辨别法与Dirichlet辨别法,然后就根据其中的来判定数列是否收敛。

参考资料来源:百度百科-收敛

参考资料来源:百度百科-发散

无穷级数的每个单项,都是确定的有限量,不是无穷小量;积分中的dx是无穷小量,积分运算是无穷级数中的Δx趋近于0时的数值
说得有点罗嗦,关键在于无穷小量累积这一点上,任何具有确定数值的小量,都不是无穷小量

0<∑1/n²<∑[1/n(n-1)]=∑[1/n-1)-1/n]=1-1/n所以收敛

至于∑1/n考虑函数ln(1+x)-x,其导数为1/(1+x)-1当x恒大于0时,导数恒小于0,当x=0时,

ln(1+x)-x=0,所以当x>0时,ln(1+x)-x<0,所以ln((n+1)/n)=ln(1+1/n)<1/n

所以1/n>ln(n+1)-ln(n)

所以∑1/n>∑ln(n+1)-ln(n)=ln(n+1)很显然不收敛。

扩展资料:

对于判别一个数项级数的敛散性,可以从下面的思路来考虑使用某种比较恰当的方法:

(1)首先,考虑当项数无限增大时,一般项是否趋于零.如果不趋于零,便可判断级数发散。如果趋千零,则考虑其它方法。

(2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了。但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,·这时就应考虑其它方法。

(3)如果级数是正项级数,可以先考虑使用比值判别法或根值判别法是否有效。如果无效,再考虑用比较判别法。对于某些正项级数,可以考虑使用积分判别法.这是因为比值判别法与根值判别法使用起来一般比较简便,而比较判别法适应的范围却很大。

(4)如果级数是任意项级数,应首先考虑它是否绝对收敛。当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数。

(5)级数敛散性的柯西判别准则给出了判断级数收敛的充要条件,因此,从逻辑上讲,它适应于一切级数敛散性的判断。

参考资料:

百度百科——收敛性

由于sin1/n~1/n,而级数1/n是发散的,根据比较判别法的极限形式知级数sin1/n也是发散的。

判别无穷级数的收敛性的方法:

首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零。反之,一般项的极限不为零级数必不收敛。

若一般项的极限为零,则继续观察级数一般项的特点:

若为正项级数,则可选择正项级数审敛法,如比较、比值、根值等审敛法。

若为交错级数,则可根据莱布尼茨定理。

另外,还可根据绝对收敛与条件收敛的关系判断。

扩展资料:

 

一个级数如果是绝对收敛的,那么也就一定是收敛的。

绝对收敛级数不仅具有可以应用针对正项级数的敛散性的判别法的特性,还具有如下的性质:

如果把任意项级数的所有正项都保持不变,而所有负项都更换为0,那么就得到一个正项级数 ;如果把它的所有负项都改变符号,而正项都更换为0,则得到另一个正项级数 ,然后就得到一个任意项级数的绝对收敛的充要条件,为正项级数与都收敛。从这个性质能够得到一个推论,即:如果任意项级数绝对收敛,就有。

作为加法交换律的一个推广,对于正项级数,如果任意改变它的各项的相加顺序,不会改变它的敛散性,同样,对于绝对收敛级数也有这样的性质。

不只是对于加法的交换律,对于绝对收敛级数的乘积也有性质:

如果两个任意项级数都绝对收敛,那么它们的各项的乘积,按照任意方法排列而得到的级数同样绝对收敛,并且和为两个任意项级数的和的乘积。


DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
乐在赚 » 等比数列与无穷级数

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情