波士顿动力学公司制造的机器人是通过什么达到平衡的

栏目:资讯发布:2023-09-22浏览:6收藏

波士顿动力学公司制造的机器人是通过什么达到平衡的,第1张

复杂传感器

通过一种新的控制算法,美国佛罗里达州人机认知研究所(Florida Institute for Human and Machine Cognition, IHMC)的机器人实验室实现了拟人的平衡能力。

该算法的测试使用了波士顿动力公司(Boston Dynamics)的Atlas机器人,在算法的控制下,Atlas现在可以平稳的走过一段崎岖不平的水泥砖路。从动图中我们可以看到,Atlas的行为和人类基本无差:首先把脚轻轻地踩上去,判断地面的承受能力,接着通过调整身体和手臂来实现平衡。

5月1日,美国人类与机器认知研究所(IHMC)在波士顿动力公司的Atlas机器人身上,测试了其开发的机器人自动路线规划算法。对于机器人来说,独木桥式的狭窄通道是复杂地形,成功通过率只有50%。

我们先来了解下机器人不同的行走方式:

1轮式移动机器人

轮式移动机器人,顾名思义,就是驱动轮子来带动机器人行走,轮式的效率最高,行进速度快,转向灵活,造价较低,故障容易处理,另外,在相对平坦的地面上,轮式移动比足部更具优势,控制也相对简单,轮式移动机构现今应用相当广泛,是目前研究最为透彻的移动方式之一。

2履带式移动机器人

典型的履带式移动机构由驱动轮、导向轮、拖带轮、履带板和履带架等部分构成。履带式移动机构适合在复杂路面上行驶,它是轮式移动机构的拓展,履带本身起着给车轮连续铺路的作用。

履带式移动结构在地面支撑面积大,接地比压小,滚动摩擦小,通过性能比较好,转弯半径小,牵引附着性能、越野机动性、爬坡、越沟等性能优于轮式移动机构。履带式移动机构广泛用于各种军用地面移动机器人。

它的缺点是由于没有自定位轮和转向机构,只能靠左右两个履带的速度差实现转弯,所以在横向和前进方向上都会产生滑动;转弯阻力大,不能准确地确定回转半径等。

3跳跃式移动机器人

跳跃式机器人对地形有更强的适应力。但是跳跃运动首先要克服自身重力的影响,由于需要跳跃,自身重力必然要小,重力要小,质量也要小,能源就是最大问题。而且腾空和触地阶段动力学方程复杂,平衡难以控制。跳跃后半段要从高空坠落,机器人本身的抗摔能力又有着较高的要求。

4腿式移动机器人

腿式行走机器人基于仿生学原理,目前展开广泛研究的有两足、四足、六足等各种腿足式移动机构,该机构几乎可以适应任何路面的行走,且具有良好的机动性,其运动系统具有良好的主动隔振功能,可以比较轻松地通过松软路面和大跨度障碍。在最开始,双足机器人使用的平衡控制策略是「静态步行」(static walking)。这种策略的特点是:机器人步行的过程中,重心(COG,Center of Gravity)的投影始终位于多边形支撑区域(support region)内,这种控制策略的好处在于:机器人可以在行走动作中停止而不摔倒,但代价是行动速度非常迟缓(每一步需要花费10 秒甚至更长,因为需要保持重心的投影始终位于支撑区域,否则将不稳定)。

小型双足机器人运动能力和稳定性之所以很强,主要由于它的重心很低,从某种意义上来讲,并非依靠智能完成复杂环境的适应能力,而是其机械结构提供了一定的优势。而大型双足机器人基本上都要依靠加入伺服电机的智能驱动单元(步行器的关键部分)来控制机器人稳定运动。

缺点是行进速度低缓,效率低下,而且由于腿部与地面接触面积相对较小,遇到非刚性地面状况时会出现下陷的情况。同时,由于结构方面的原因,腿式行走的机器人都无法做到结构紧凑,而且其对腿部关节部位的制造要求较高,成本较高。总体来说,腿式运行速度比较慢,机构形式在上述各种移动机构中最复杂,控制也十分困难,目前尚处于研究和实验阶段。

同时核心算法是比较耗时间的,也是研发重点,电池部分现在主要还是要依靠产业的研发能力和供应能力,机器人研发团队很少会为了电池配备相关研发人员。现在整体机器人还处在研发阶段,仍然要靠电缆连接交流电来作为电源,因此商用蓄电池持续性是最大问题。

传感器则是持续地测量机器人身上部件的方向和移动。也需要实时读出和处理这些传感器所收集的数据,持续调整伺服电机,以保持所需的平衡,不至于倒下。要达到这些要求,需要非常先进的低成本、低功耗半导体芯片,低成本的精密移动传感器,以及先进的算法和具有人工智能的语音识别和视觉识别技术。例如,美国一家公司发明了一种“推不倒”的算法,传送至Atlas人形机器人,机器人可以灵巧地平衡,甚至你如果故意推倒它,它也可以借助协调能力惊人的双足立刻稳定平衡。

一位机器人的老前辈曾说过,机器人是一个机械,机械不能革命只能进化。人类的大部分行为能力是需要借助于逻辑分析,例如思考问题需要非常明确的逻辑推理分析能力,而相对平常化的走路,说话之类看似不需要多想的事,其实也是种简单逻辑,因为走路需要的是平衡性,大脑在根据路状不断地分析判断该怎么走才不至于摔倒,而机器人走路则是要通过复杂的计算来进行。

“教”一个机器人走路远比教一个1岁的小朋友走路更辛苦,因为机器人的“大脑”一片空白,它的举手抬足应该以何种角度,到怎样的高度,都需要工程师凭逻辑和经验一一设定。而机器人要想像人一样优雅地走路,不仅要配置激光雷达、摄像头,还需要额外的算法和配套传感器。波士顿机器人经过十年变迁,本次波士顿动力机器人完成最难行走实验,其表现出的极强协调性,无疑在双足机器人的路上已经越走越远。

足式机器人无疑是最像人类,以及最能够满足替代人类进行某些 探索 活动的最佳选择,虽然波士顿机器人的军工性质很难转为民用以及其融资状况一直被人诟病,但不可否认的是其研究依旧走在机器人认知前沿。

对此您有什么意见和看法呢?欢迎留言讨论!

机器狗不属于生物。机器狗、钟乳石、化石没有生命的基本特征,不属于生物。

一、大狗机器人

1、因形似机械狗被命名为“大狗”。由波士顿动力学工程公司(Boston Dynamics)专门为美国军队研究设计。

2、美国军方已决定向阿富汗派遣一种名为“大狗”的新型机器人,作为增兵计划的一部分。与以往各种机器人不同的是,“大狗”并不依靠轮子行进,而是通过其身下的四条“铁腿”。

3、美军将阿富汗作为测试这种具有高机动能力的四足仿生机器人的试验场,开始试验这款机器人与士兵协同作战的性能。

二、功能作用

1、大狗机器人由波士顿动力学工程公司专门为美国军队研究设计。它不仅仅可以爬山涉水,还可以承载较重负荷的货物,而且这种机械狗可能比人类都跑得快。

2、“大狗”机器人的内部安装有一台计算机,可根据环境的变化调整行进姿态。“大狗”既可以自行沿着预先设定的简单路线行进,也可以进行远程控制。

3、大狗机器人被称为“当前世界上最先进适应崎岖地形的机器人”,但是我们应当冷静地看待这种机器人。

4、可能未来会有一天,这种机器人会像科幻**《终结者》中“T-800终结者”能够对人类执行残酷无情的杀戮任务。

三、设计特色

1、“大狗”机器人由波士顿动力学工程公司研制。这种机器狗的体型与大型犬相当,能够在战场上发挥非常重要的作用:在交通不便的地区为士兵运送弹药、食物和其他物品。

2、它不但能够行走和奔跑,而且还可跨越一定高度的障碍物。该机器人的动力来自一部带有液压系统的汽油发动机。

3、“大狗”的四条腿完全模仿动物的四肢设计,内部安装有特制的减震装置。机器人的长度为1米,高70厘米,重量为75千克,从外形上看,它基本上相当于一条真正的大狗。

4、“大狗”机器人的内部安装有一台计算机,可根据环境的变化调整行进姿态。而大量的传感器则能够保障操作人员实时地跟踪“大狗”的位置并监测其系统状况。

本着颜值即正义的理念,日本“美女机器人”上市后就刷爆网络,面部细节精致到挑不出任何毛病,也让网友们感叹日本机器人技术高超令人折服 。全球十大机器人公司排名中,除了第一名就是日本公司以外,其余还有4家是日本公司,说日本机器人产业占据全球一半江山也毫不为过 。同时也有很多网友觉得老美的机器人水平,比较日本来说相差很远,毕竟这前十的机器人公司没有一家是老美的,但事实并非如此,如果真要比较起来的话, 日本机器人在老美的机器人面前,只能算是“弟弟”而已。

日本的机器人主要是在工业领域和服务业领域中,以工业机器人为例,因为他们国内的制造产业大规模向海外转移,所以国内对工业机器人需求量小,但是海外出口规模非常大。 而且日本人的性格特点也在其制造的设备中体现得比较明显,日本人强调简单适用性,在生产上经常会专攻某个领域,但是又比较保守,力求经济实用。所以日本工业机器人设计就比较简单实用,但是只能重复同一个简单的动作,无法进行的复杂工作。

服务行业的机器人出口量则没有工业机器人出口量大,日本对于服务行业机器人的需求,同样是来自于国内环境的原因,因为老龄化加重,而年轻人中也有很多网络上所说的“肥宅”,很多年轻人不愿意找工作,各个行业就大量缺少员工。 所以医院护理机器人和餐厅服务机器人就应运而生。

但是老美的机器人则不同,它更倾向于综合性,而且因为国内制造业大量流失,所以对工业机器人没有丝毫兴趣。但因为常年“挑事”的原因和一些高精端,复杂产业较多,所以老美的机器人性能更全面。如果两国机器人真的相比较起来,日本的只能算是机器,老美的机器人才更符合人们心中对机器人的概念。

就拿我们上述所说的美女机器人来说,老美同样有一款叫“林肯”的机器人,对,就是那个林肯。 它的面部细节比较日本的美女机器人有过而无不及,而且面部表情更加流畅,正常仿人机器人面部表情最多不过100帧,而林肯机器人的面部表情可达1000帧,流畅度简直不能相提并论。 “林肯”可以挤眉弄眼,咬牙切齿,甚至额头和眼角的皱纹都栩栩如生,这是日本美女机器人达不到的境界。

再比较仿人型的综合机器人, 老美波士顿公司的机器人“阿特拉斯” ,这款机器人是完全仿人型,身高15米,四肢躯干都和人类构造相同,而且还有两双传感器的眼睛,它有75公斤重,体重相比较人了夸张了很多。 不过它的身手却非常了得,跳跃攀爬都不在话下,而且动作连续性上也非常接近人来 ,它可以在奔跑的同时进行连续跳跃,还可以在奔跑过程中迅速进行前滚翻动作,这些动作都是为了避障而设计的。

另外,因为老美IT和人工智能发达,这些机器人更加智能,它们拥有更强的学习能力,可以判别环境来做出下一步行动。这 款机器人也是专门为老美特殊部门设计制造的,是专门在复杂和高危环境下,代替人类去执行一些搬运或者侦查任务,所以它的负重能力也同样非常强大。 但是日本机器人则不同,它是输入固定编程后重复做同一件事情,没有任何智能可言,甚至摔倒之后都不会爬起来。

老美另一款得意之作相信很多网友也看到过视频,同样是波士顿研发的“机器狗”,这只“机器狗”和“阿特拉斯”,都是为美特殊部门所服务的,所以我们需要警惕。它的复杂程度是日本机器人所不能比拟的,负重奔走爬坡都是小菜一碟,四条腿都有减震蓄能的设计,在任何地形上都可以保持相对平衡,内部由传感器和陀螺仪控制。而且这个设计团队,拥有全球最顶尖的设计团队,和老美的各个特殊部门都有签订合同,这也能看出来老美对这项机器人研发的重视程度。

老美的机器人相较于日本机器人强的不是一星半点, 主要是因为老美本身 科技 就要强于日本,在传感器,计算机领域遥遥领先全球 ,这点我们自然是要承认的。而我们国家的机器人水平,其实是结合了这两个国家的来做的, 日本有的工业机器人,我们国家同样也有,但是在高精端性能上只是差了一些经验累积,相信在2025年前就能追上。而老美的仿人型机器人,我国现在还达不到那个水平,但是机器狗我们是可以做出来的,而且能力几乎相差无几,奔跑弹跳,甚至后空翻都可以做到,只是负重方面还需要加强,材料应用上还需要摸索。还有在传感器应用方面,我们国家可能已经超过日本了。

我们国家在机器人领域研究起步晚,但是近些年也在快速追赶,而且势头很猛,全球排名前十的机器人公司,前些年就有一家中国公司,而且国家对机器人领域的重视程度也很高,相信不久的未来我们也能拥有和老美一样先进的机器人技术。

2021年8月10日,小米举办了以《我的梦想,我的选择》为主题的2021年度演讲暨发布会,作为“彩蛋”公布的仿生四足机器人CyberDog工程 探索 版,彻底将整场新品发布会引向高潮。

相比于CyberDog这个国际范儿的英文名,小米内部还为它起了一个很接地气的中文名“铁蛋”,小米工程师说取这个名字的原因,是希望这个项目好“养活”,能茁壮成长。

国内平价仿生机器人

自2005年波士顿动力公司创造出四足机器人大狗后,国内外一些企业也先后开发了相关产品,而小米CyberDog仿生四足机器人,正是从波士顿动力Spot中汲取灵感推出的。

8月17日,美国波士顿动力公司官方YouTuBe平台发布一段名为Atlas | Partnersin Parkour的演示视频,该视频展示了Atlas接近于人类的跑酷能力,跑酷的赛道主要由半斜坡、平衡木及相应的木箱障碍物构成,而 Atlas在90s的视频内接连完成了包含慢跑、跳跃、转身以及后空翻等动作在内的跑酷。

跑酷于人形机器人而言,相当于 汽车 领域的赛车 ,要实现在这一环境的运动,对机器的性能有着较高的要求。而极限的环境,可以有效测试性能极限,从而对现有的零件、技术进行改进。

该视频中展示的Atlas人形机器人,相比于过往视频中的后空翻等单一动作,最大的改变是Atlas目前的动作执行方式为 感知驱动

过去的人形机器人只能在平坦的表面或固定的盒子上进行预编程的跑酷,Atlas搭载RGB摄像头和深度传感器,通过团队在Atlas上创建的模板行为,Atlas可以自动检测检测环境并自动对其做出反应。

但总的而言,本次跑酷测试的完成,可以称为是 人形机器人又一次大进步 。在另一程度上,或还表示着现代 汽车 集团控制下的波士顿动力仍未放弃自身「属于未来的机器人公司」这一属性。

相较之下,现在的CyberDog虽然是一款DEMO版产品,但其内置NVIDIA Jetson Xavier NX边缘AI运算芯片,是目前全球最小的AI超级计算机,还搭载 小米自研高性能伺服电机 ,身兼澎湃算力与强劲动力,使TA能轻松完成一些看似酷炫的动作展示。

对比波士顿动力系列机器人高达几万美元(约合人民币几十万)的售价来看,完整度已经很高的 CyberDog才售价 9999 元 ,不仅不算贵,甚至是亏本了。

中国企业居然在一款尚处于功能和用途摸索阶段的产品上,出现大打价格战的迹象……实不知波士顿动力方面,对此究竟有何感想。

危险搜救、医疗救援、家庭陪护等场景,都是CyberDog未来可以进行扩展的领域,但 小米开发团队还需要 探索 更多应用场景 ,为人类提供更多方便快捷的服务。

AI,才是万物智能化的根本

目前,机器人产业在硬件方面其实已经成熟,而小米CyberDog四足仿生机器人之所以能各种秀操作,关键就在于人工智能算法被更进一步、更广泛、更深入的融合到机器人系统中。

机器人的 每一种动作背后,就是一个算法 ,像是走路、跳跃等,要把各种算法软件结合,进而协调双足自由度的运作。

一开始让机器学基本这些基本动作,不论是通过人或机器的评估机制,例如强化学习,让机器人每一次的动作都能更灵活一点,然后找到耗费能量最小的力度和姿态,然后让TA识别不同的场景需求,调取各自的算法,通过 人工智能技术实现机器“自学习”

未来,将不再只是靠新开发的一套算法,去教会机器人新动作,而是要让机器人能做到自己遇到新环境时,会发展出对应环境需求的新动作,这样的跃进发展,将会对机器人带来非常大的变革转变。

AI人才需求巨大

智能市场发展越来越快,波士顿动力公司的机器人Atlas已经可以跑酷了,由此可见,机器人越来越拟人化,能够做的事情越来越多,已经朝着认知智能方向发展。

随着 科技 的不断发展,人工智能已经逐渐走进了我们的生活,不管是云计算还是大数据,或者是相关技术,最终的发展诉求都是走向人工智能。

人工智能化是诸多技术实现其价值的重要环节,也是世界 科技 的重要领域,任何平台、算法、工具都不可能自己运行,归根到底,面临我们的最大挑战是人才短缺。

从波士顿动力研发的机器人,到2021年春晚“机器牛”群演,再到如今的小米CyberDog四足仿生机器人,其实 仿生机器人离我们并不遥远 ,但真要大批量地制造它,让它出现在我们的生活中,还需要一段时间。

相信终有一天,机器人能以平价真正进入寻常百姓的家庭中,为人类 社会 做出更多的贡献。

随着 科技 的不断发展,机器人、人工智能、AI、大数据、元宇宙这些高 科技 技术和概念的出现,为人们带来对未来的憧憬和向往。在高速发展的 科技 时代,未来的农业会如何?

本期,壹度创意我与你一起了解全球顶尖农业机器人及其在农业各个阶段的应用,去一同探究未来农业所带来的变革。

众所周知,春播夏长秋收冬藏,这是自然作物的生长规律。农作物除了遵循自然规律之外,还与其所处的地域及气候等因素相关。但无论哪些因素的影响,农作物都会遵循其内在生长规律。正如农民耕种所遵循的流程化作业一样,如犁地、播种、浇水施肥、锄草、灭虫、灌溉、收获几个步骤是必不可少。

通常,农民在种地之前一般选取一块肥沃的土地,进行犁地,将土块拍碎,越碎越好,然后播下种子并用土覆盖,之后施肥为保证土壤湿润要进行浇灌,后期要进行打除草剂等,如果气候干燥还要及时灌溉,最后进行收割。在农业发展的历程中,我们最初依赖于农民的勤耕日作,但随着农业机械化及农业机器人的出现,农业的生产方式发生了很大的变化。

01 · 犁地机器人

一款芬特公司研发播种机器人采用了swarm定向播种技术,这些机器人以一种完全自主、高效且高精度的协作方式,来进行犁地和播种的工作,极大地改善了农耕时节农民从人工推犁耙到牛车拉犁耙,再到驱农用车犁地的劳动方式。

02 · 育苗机器人

育苗大部分时间只是把盆栽作物移来移去,这是一项非常单调枯燥的工作,浪费人力、效率不高。来自波士顿的育苗机器人解决了这个问题。这个育苗小管家主要由滚动轮胎、抓手和托盘组成。工作人员只要实现在触摸屏上设定地点参数,机器人就能感应盆栽,并自动把它们移动到目的地点。不过,它们的工作的确是最单调的。

03 · 种植机器人

播种的时节到了,在乡村地头我们依旧可以看到,农民拿着铁锹一铁锹挖个坑把种植播下去的场景,也可能会看到一个农民开着类似拖拉机一样的农业机械完成种植作业。这不免让我们感慨,农民那么辛苦的工作,但得到的回报却极其微薄。农业机械化的发展减轻了农民的劳动负担,提高了农业产量,促使农业发展向前迈进了一大步。

而国外一款名为Prospero的自动微型种植机器人在减轻劳动力及提高农业产量方面有着更为突出的贡献。它采取团队协作的方式,结合博弈论理论来逐株做出种植决策。机器人的顶部装有旋转双超声波感应器以来感知障碍物来避开潜在的风险,机器人下方传感器可以获取更精准的数据,来决定植物种植的最佳间距和深度。如果在它所停留之处未发现种植,Prospero可以挖个洞,放一粒种子,并用土壤将其覆盖。

此外,一位法国发明家发明了专用于葡萄种植园的机器人,并把它命名为“瓦也”(Wall-Ye)。它几乎能代替种植园工人的所有工作:修剪藤蔓、剪除嫩芽、监测土壤和藤蔓的 健康 状况。除此之外,瓦也比目前已有的种植园机器人多出一种功能,那就是安全系统。瓦也只能在有程序设定好的种植园工作,危险情况下还能启动自我毁灭程序。只在设定好的范围内工作,危险情况下宁愿启动自我毁灭程序也不“反叛”,颇有科幻片主角瓦力的感觉,瓦也可算是最忠诚的机器人了。

04 · 灌溉机器人

为了使农作物更好地生长,浇水、施肥、除草是培育农作物的过程中必不可少的过程。国外一款名为Grower被称为“草坪或农田中的灌溉英雄”。Grower可以自行慢游,利用传感器检测农田的干燥度来智能地灌溉。有些地比较湿润,不需要浇那么多水,有些土地比较干燥,需要浇大量的水,这样既为农作物提供了一个均衡的环境,还有效地节约了水资源。

05 · 蜜蜂机器人

植物开花授粉,才能酝酿果实。一到夏天,我们就能看到忙碌的蜜蜂身影。但如果你种植的植物是大棚,且在蜜蜂冬眠时开花,授粉就成为一个难题。

哈佛工程师发明了一种形似蜜蜂的小型飞行机器人,它可以自动传授花粉、进行灾后搜查和救助工作,是一款功能多样的农用机器人。英国科学家的野心更大,他们希望能发明出一款模拟真实蜜蜂大脑的机器蜂,它能基本完成蜜蜂的所有工作。这种功能强大的小“飞行员”,是不是很有科幻片的感觉?

06 · 农作物监测机器人

德国科学家研发出一款名叫BoniRob的农业机器人,它装了高精度的卫星导航,能将自己的位置精确在2厘米以内。它的外形很像一款四轮越野车,利用光谱成像仪来区分出绿色作物和褐色土壤,并记下每一株作物的位置,在生长季中一次次返回原地观察它们的生长。有着越野车的外形,却做着人工智能的活,难道不是很炫酷吗?

这“只”机器人就像一个仓鼠球,没有轮子也没有腿脚,移动起来就像一只仓鼠在球里跑。它利用GPS和WI-FI技术监测农作物数据,包括土壤组成、温湿度和植被 健康 状况,并报告给农民。“滚跑”过程中,它还能帮助抚平土壤,而且不会对农作物造成伤害。假如这只小球不小心掉入陷阱或被人抓了,农民可以远程操控它运作。跑起来就像是仓鼠在笼子嬉戏,再加上它圆滚滚的外表,最萌的农业机器人不是它还能是谁?

在澳大利亚杏仁农场上工作的机器人,可以巡逻果园并收集数据

“瓢虫”智能农业机器人,虽然不能消灭害虫,但它可以移动侦察农场,测绘,分类以及监测多种作物之间的问题。

07 · 采摘机器人

收获季节,大量农作物成熟,通常,在乡村田间会看到家家户户都开始在田间收获果实。有些果实如果不及时收割,就会落果腐败。这也是一个劳动力密集型作业。

Frontier IP推出了一款树莓采摘机器人,树莓比任何其他水果都娇嫩柔软,生长在树叶和浆果分布复杂的灌木丛中。

当然,还有很多机器人公司根据不同作物果实特征,研发了各种水果采摘、农作物收割机器人,极大地减轻农民劳作负担及劳作时间成本。

08 · 牧羊机器人

大草原上,你会时常看到牧羊人赶着牛羊群的身影。羊群非常依赖牧羊人的饲养和保护,或由牧羊人的带领下寻找新的草场觅食。澳大利亚科学家发明了一种功能类似牧羊犬的机器人来取代牧羊人,能在农场上代替人或牧羊犬赶羊。它使用2D和3D感应器,内置了全球定位系统,能够根据羊群的移动速度来赶着它们走。

本期,关于顶尖的农业机器人就分享到这里。在这个 科技 与信息的时代,壹度创意认为:

我们要立足当下农民切实问题,如劳动力缺失、生产效率低等问题,也要抬头看未来,尤其当下哪些技术可以切实地帮助农民解决问题,提升农业的生产率。农业机器人的出现从根本上解决了当下农业发展过程中受人力及生产效率制约的问题。

虽然很多技术还只是研发阶段,但我们坚信,未来农业将会更加智能、便捷,为千百年来被缚于土地之上农民减轻负担,促进农业增产、提效、提质,在乡村振兴与发展领域,真正发挥其贡献。

延伸阅读

波士顿动力学公司制造的机器人是通过什么达到平衡的

复杂传感器通过一种新的控制算法,美国佛罗里达州人机认知研究所(Florida Institute for Human and Machine Cognition, IHMC)的机...
点击下载
热门文章
    确认删除?
    回到顶部