一个数据结构的ADT描述是ADT的界面,它包括哪几部分?

栏目:资讯发布:2023-11-22浏览:5收藏

一个数据结构的ADT描述是ADT的界面,它包括哪几部分?,第1张

一个ADT可描述为:

ADT ADT-Name{

Data://数据说明

数据元素之间逻辑关系的描述

Operations://操作说明

Operation1://操作1,它通常可用C或C﹢﹢的函数原型来描述

Input:对输入数据的说明

Preconditions:执行本操作前系统应满足的状态//可看作初始条件

Process:对数据执行的操作

Output:对返回数据的说明

Postconditions:执行本操作后系统的状态//"系统"可看作某个数据结构

Operation2://操作2

问题一:数据结构在讲什么? 数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的 。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

一、线性表

(一)线性表的定义和基本操作

(二) 线性表的实现

1 顺序存储结构

2 链式存储结构

3 线性表的应用

二、栈、队列和数组

(一)栈和队列的基本概念

(二)栈和队列的顺序存储结构

(三)栈和队列的链式存储结构

(四)栈和队列的应用

(五)特殊矩阵的压缩存储

三、树与二叉树

(一)树的概念

(二)二叉树

1 二叉树的定义及其主要特征

2 二叉树的顺序存储结构和链式存储结构

3 二叉树的遍历

4 线索二叉树的基本概念和构造

5 二叉排序树

6 平衡二叉树

(三)树、森林

1 书的存储结构

2 森林与二叉树的转换

3 树和森林的遍历

(四)树的应用

1 等价类问题

2 哈夫曼(Huffman)树和哈夫曼编码

四、 图

(一) 图的概念

(二) 图的存储及基本操作

1 邻接矩阵法

2 邻接表法

(三) 图的遍历

1 深度优先搜索

2 广度优先搜索

(四) 图的基本应用及其复杂度分析

1 最小(代价)生成树

2 最短路径

3 拓扑排序

4 关键路径

五、 查找

(一) 查找的基本概念

(二) 顺序查找法

(三) 折半查找法

(四) B-树

(五) 散列(Hash)表及其查找

(六) 查找算法的分析及应用

六、 内部排序

(一) 排序的基本概念

(二) 插入排序

1 直接插入排序

2 折半插入排序

(三) 气泡排序(bubble sort)

(四) 简单选择排序

(五) 希尔排序(shell sort)

(六) 快速排序

(七) 堆排序

(八) 二路归并排序(merge sort)

(九) 基数排序

(十) 各种内部排序算法的比较

(十一) 内部排序算法的应用

问题二:数据结构到底是讲什么的呢 相信你也知道俗话说:计算机程序=算法+数据结构。数据结构就是讲的怎样在计算机程序中组织存储批量数据,以及为什么这样组织。相同的一批数据,不同的组织方式(不同的数据结构)有不同的优缺点,有的利于查找(hash);有的利于排序(树);有的利于插入、删除(节点式链表)。在深入还有不同组织方式的查找、排序等等操作的时间、空间复杂度。

问题三:数据结构是什么意思?希望讲的通俗一点。 数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的 。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。bjlwebsite

问题四:什么是数据结构? 30分 数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的 。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。

数据结构在计算机科学界至今没有标准的定义。个人根据各自的理解的不同而有不同的表述方法:

Sartaj Sahni在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在胆该对象的实例合组成实例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的 ”。

Clifford AShaffer在《数据结构与算法分析》一书中的定义是:“数据结构是 ADT(抽象数据类型Abstract Data Type) 的物理实现。”

问题五:数据结构学的到底是什么,和算法的关系 本人乃一个数据痴迷者,在计算机的道路上,也是一个数据结构的痴迷者,现在大学里面和同学搞开发也痴迷于数据库,我就我个人的理解给你谈一谈:首先,数据结构是一门计算机语言学的基础学科,它不属于任何一门语言,其体现的是几乎所有标准语言的算法的思想。上面的概念有一些模糊,我们现在来具体说一说,相信你门的数据结构使用的是一门具体的语言比如C/C++语言来说明,那是为了辅助的学习数据结构,而数据结构本身不属于任何语言(相信你把书上的程序敲到电脑里面是不能通过的吧,其只是描述了过程,要调试程序,还需要修改和增加一些东西)。你们的书上开始应该在讲究数据的物理存储结构/逻辑存储结构等概念,说明数据结构首先就是“数据的结构”,在内存上的存储方式,就是物理的存储结构,在程序使用人员的思想上它是逻辑的,比如:你们在C/C++中学习到链表,那么链表是什么一个概念,你们使用指针制向下一个结点的首地址,让他们串联起来,形成一个接一个的结点,就像显示生活中的火车一样。而这只是对于程序员的概念,但是在内存中存储的方式是怎样的那?对于你程序员来说这是“透明”的,其内部分配空间在那里,都是随机的,而内存中也没有一个又一根的线将他们串联起来,所以,这是一个物理与逻辑的概念,对于我们程序员只需要知道这些就可以了,而我们主要要研究的是“逻辑结构”。我可以给你一个我自己总结的一个概念:所有的算法必须基于数据结构生存。也就是说,我们对于任何算法的编写,必须依赖一个已经存在的数据结构来对它进行操作,数据结构成为算法的操作对象,这也是为什么算法和数据结构两门分类不分家的概念,算法在没有数据结构的情况下,没有任何存在的意义;而数据结构没有算法就等于是一个尸体而没有灵魂。估计这个对于算法的初学者可能有点晕,我们在具体的说一些东西吧:我们在数据结构中最简单的是什么:我个人把书籍中线性表更加细化一层(这里是为了便于理解在这样说的):单个元素,比如:int i;这个i就是一个数据结构,它是一个什么样的数据结构,就是一个类型为int的变量,我们可以对它进行加法/减法/乘法/除法/自加等等一系列操作,当然对于单个元素我们对它的数据结构和算法的研究没有什么意义,因为它本来就是原子的,某些具体运算上可能算法存在比较小的差异;而提升一个层次:就是我们的线性表(一般包含有:顺序表/链表)那么我们研究这样两种数据结构主要就是要研究它的什么东西那?一般我们主要研究他们以结构为单位(就是结点)的增加/删除/修改/检索(查询)四个操作(为什么有这样的操作,我在下面说到),我们一般把“增加/删除/修改”都把它称为更新,对于一个结点,若要进行更新一类的操作比如:删除,对于顺序表来说是使用下标访问方式,那么我们在删除了一个元素后需要将这个元素后的所有元素后的所有元素全部向前移动,这个时间是对于越长的顺序表,时间越长的,而对于链表,没有顺序的概念,其删除元素只需要将前一个结点的指针指向被删除点的下一个结点,将空间使用free()函数进行释放,还原给操作系统。当执行检索操作的时候,由于顺序表直接使用下标进行随机访问,而链表需要从头开始访问一一匹配才可以得到使用的元素,这个时间也是和链表的结点个数成正比的。所以我们每一种数据结构对于不同的算法会产生不同的效果,各自没有绝对的好,也没有绝对的不好,他们都有自己的应用价值和方式;这样我们就可以在实际的项目开发中,对于内部的算法时间和空间以及项目所能提供的硬件能力进>>

问题六:谁的数据结构讲的好 你好。

用网易公开课,可以看斯坦福的和MIT的,那个秒杀国内的。

可以用手机WIFI看,也可以用电脑看。

如果我的回答没能帮助您,请继续追问。

问题七:用你的理解说,什么是数据结构 数据结构+算法=程序数据结构是指数据在计算机内存(或磁盘中)的组织形式

所谓组织形式是指数据的

{

逻辑结构:数据间的邻接关系 如 线性、树形、图状;

存储结构:数据以何种方式进行存储 如 顺序式、链式;

}

例:对10个人的成绩进行排序的算法

{

首先,将10个人的信息和成绩输入计算机

然后进行排序

最后,输出结果

}第一步是存储信息 关键要考虑2个问题 :以何种方式将10个人的信息存入(存储结构),存入候每个人之间的关系是什么?(逻辑结构)

即 要求 指明数据在计算机内的组织形式 这是一个数据结构问题 显然如果只有这10个数据的话,我们会选择数组这种数据结构进行组织

先说几种常见的数据结构: 数组 链表 二叉树 栈 哈希表等所有的数据结构都通过其逻辑结构和存储结构来定位,二者也是每一个数据结构的核心部分。如 1维数组的

逻辑结构:线性

存储结构:顺序式

单链表 是 线性和链式 队列是 线性和顺序式解决了数据的存储问题

接着思考如何排序

首先处理同一类问题(此处为排序),如果数据结构不同,其算法也不同。同样是排序却有堆排序和数组排序之分等

因此在考虑算法时,要注意考虑数据结构。

在程序设计时更应该综合考虑算法与数据结构的选择与搭配,以设计出最适合的程序

因此 程序设计可分二步

{

1选择数据结构

2根据选择的数据结构设计算法

}

然后一个程序即构建成功了。

原创

问题八:数据结构到底怎么学比较好啊? 写数据结构代码编程了学习C语言,是大多数初学者的经验,其实有办法可以避免的。

多想> 多看 > 多写字 > 多动键盘

养成好的编程习惯很重要。

做任何工作之前,要把自己的思路整理清楚 参考别人的相关工作经验,针对自己的需求做分析 把思路落实到纸张上 采用自顶向下的编程方式,先把你的个函数的功能,入口和出口描述清楚 每个函数内部的执行流程,都要注释好。 最后再分段逐步编码。

这样可以有效的避免大多数的错误发生。 即便出现错误,也很容易定位到问题的所在。 不知道大家是怎样看待数据结构这门课的,有多少人觉得数据结构很难呢?我知道还是有一些同学这样觉得的,有时候我跟我的朋友讲要怎样学,讲了一大堆以后,他就向我抱怨:我以前c++都没有学好,数据结构更学不好了,这哪跟哪的话啊,数据结构与c++没有什么关系,我想假如抱有这样的心态,自己就不相信自己,那是不可能学好的,然后那些觉得数据结构很难的同学,我想他们应该会很看重数据结构的吧,然后就一天到晚捧着一本数据结构,这样不会觉得很累吗?而且因为觉得很难,就容易不相信自己,学的效率也不会很好,个人认为数据结构很好学,很容易学,或许这有点妄自菲薄吧,但是因为我觉得很容易,当然就会觉得自己没问题,学得很轻松,效果也还可以。大家都是从高考走过来的,应该知道心态的重要性吧,两种不同的心态,完全就是两种不同的效果。学了这么久数据结构了,我们到底在学些什么呢?不知道大家有没有想过,那现在我们现在来归纳一下我们学习的内容吧,其实学到现在我们也就学了几种普通的数据结构,象二叉树,树,图,还有排序的问题,前面的线性表和字符串也就是一些概念,当然还有一个很重要的KMP算法,然后在每种数据结构中我们也就是学到了若干处理的算法,我想真正数起来也就是几十个算法吧。学习数据结构也就是要掌握这几十种算法,多简单。至于如何掌握每个算法呢,我想就是多看看书,重要的是能够理解。 如果真的想学好数据结构的话,最好是能够自己思考问题,不要刚想了一会就觉得做不出来,然后就去问其他人。其实张老师给我们的作业还是基于我们的水平的,我绝对相信我们自己能够独自想出算法,虽有可能会比较长时间吧,但是这样肯定会比问其他人学到更多的东西。当然我并不是说不要问同学,有时候就是脑筋转不过来,一问别人就懂了,当然问了别人不能只是我知道了这个算法,还应该去想如何思考才能得到这个算法,这样水平会提高很多。

很多计算机专业的同学对于大学2年级开设的数据结构课程很是头痛 看见大家总在谈论数据结构重要性,可使自己学习却总也找不到合适的方法 下面我和大家分享一下我过去一年多以来学习和应用数据结构方面一些经验 内容都是来自作者本人的一些经历和体验,希望对于大家学习数据结构有引导作用。 1什么是数据结构 数据结构从文字上面来看,为数据和结构两部分。这样就很容易联系到数据结构的本质是一种对于数据结构花的知识。补充一个知识点,数据结构本质和离散数学有很密切的关系。离散数学是处理的是离散(非连续的)的数据,站在数据结构的观点上来看,也可以理解是一种非连续数据的结构。 2数据结构和程序设计语言 数据结构和程序设计语言本身没有任何联系,唯一有的关系就实用程序语言去描述数据结构。 因为数据结构是一种抽象数据,通过程序设计语言可以将在计算机中进行实现。今天大学里数据结构课程常用来描述数据结构的语言有C程序设计语言,C 程序设计语言和JAVA程序设计语言而对于喜欢其他语言的同学完全可以自己通过学习数据结构后用自己熟悉的程序设计语言去完成程序化的描述 我自己过去>>

问题九:数据结构视频哪个讲的比较好 ! 清华大学 严蔚敏 的 - =# 优酷上有全集…… 但兄台你要忍住、刚开始看的时候吓坏我了、、、还有一个是中山大学的、普通话不太标准 讲的还比较彻底……都是在优酷或土豆上的

何谓数据结构

数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。

数据结构主要研究什么?

数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。通常,算法的

设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。

什么是数据结构?什么是逻辑结构和物理结构?

数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组:

DS=(D,S), //ie, data-structure=(data-part,logic-structure-part) 这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×},称之为元素的逻辑结构。 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。

数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射:

(PD,S) -- > M 存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。 P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。

因此,我们至少可以得到4×4种可能的物理数据结构:

sequential (sets)

linked lists

indexed trees

hash graphs

(并不是所有的可能组合都合理)

数据结构DS上的操作:所有的定义在DS上的操作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。

DS上的基本操作:任何其他对DS的高级操作都可以用这些基本操作来实现。最好将DS和他的所有基本操作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本操作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的操作的子集。 对于DATs的高级操作可以被设计为(不封装的)算法,利用基本操作对DS进行处理。

好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算的。比如对一个图进行操作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为线性结构才能对图进行操作。

树是好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。实际上,每一种递归的结构都可以被转化为(或等价于)树形结构。

从机器语言到高级语言的抽象

我们知道,算法被定义为一个运算序列。这个运算序列中的所有运算定义在一类特定的数据模型上,并以解决一类特定问题为目标。这个运算序列应该具备下列四个特征。 有限性,即序列的项数有限,且每一运算项都可在有限的时间内完成;确定性,即序列的每一项运算都有明确的定义,无二义性;可以没有输入运算项,但一定要有输出运算项;可行性,即对于任意给定的合法的输入都能得到相应的正确的输出。这些特征可以用来判别一个确定的运算序列是否称得上是一个算法。 但是,我们现在的问题不是要判别一个确定的运算序列是否称得上是一个算法,而是要对一个己经称得上是算法的运算序列,回顾我们曾经如何用程序设计语言去表达它。

算法的程序表达,归根到底是算法要素的程序表达,因为一旦算法的每一项要素都用程序清楚地表达,整个算法的程序表达也就不成问题。

作为运算序列的算法,有三个要素。 作为运算序列中各种运算的运算对象和运算结果的数据;运算序列中的各种运算;运算序列中的控制转移。这三种要素依序分别简称为数据、运算和控制。 由于算法层出不穷,变化万千,其中的运算所作用的对象数据和所得到的结果数据名目繁多,不胜枚举。最简单最基本的有布尔值数据、字符数据、整数和实数数据等;稍复杂的有向量、矩阵、记录等数据;更复杂的有集合、树和图,还有声音、图形、图像等数据。 同样由于算法层出不穷,变化万千,其中运算的种类五花八门、多姿多彩。最基本最初等的有赋值运算、算术运算、逻辑运算和关系运算等;稍复杂的有算术表达式和逻辑表达式等;更复杂的有函数值计算、向量运算、矩阵运算、集合运算,以及表、栈、队列、树和图上的运算等:此外,还可能有以上列举的运算的复合和嵌套。 关于控制转移,相对单纯。在串行计算中,它只有顺序、分支、循环、递归和无条件转移等几种。

我们来回顾一下,自从计算机问世以来,算法的上述三要素的程序表达,经历过一个怎样的过程。

最早的程序设计语言是机器语言,即具体的计算机上的一个指令集。当时,要在计算机上运行的所有算法都必须直接用机器语言来表达,计算机才能接受。算法的运算序列包括运算对象和运算结果都必须转换为指令序列。其中的每一条指令都以编码(指令码和地址码)的形式出现。与算法语言表达的算法,相差十万八千里。对于没受过程序设计专门训练的人来说,一份程序恰似一份"天书",让人看了不知所云,可读性

极差。

用机器语言表达算法的运算、数据和控制十分繁杂琐碎,因为机器语言所提供的指令太初等、原始。机器语言只接受算术运算、按位逻辑运算和数的大小比较运算等。对于稍复杂的运算,都必须一一分解,直到到达最初等的运算才能用相应的指令替代之。机器语言能直接表达的数据只有最原始的位、字节、和字三种。算法中即使是最简单的数据如布尔值、字符、整数、和实数,也必须一一地映射到位、字节和字

中,还得一一分配它们的存储单元。对于算法中有结构的数据的表达则要麻烦得多。机器语言所提供的控制转移指令也只有无条件转移、条件转移、进入子程序和从子程序返回等最基本的几种。用它们来构造循环、形成分支、调用函数和过程得事先做许多的准备,还得靠许多的技巧。 直接用机器语言表达算法有许多缺点。

大量繁杂琐碎的细节牵制着程序员,使他们不可能有更多的时间和精力去从事创造性的劳动,执行对他们来说更为重要的任务。如确保程序的正确性、高效性。程序员既要驾驭程序设计的全局又要深入每一个局部直到实现的细节,即使智力超群的程序员也常常会顾此失彼,屡出差错,因而所编出的程序可靠性差,且开发周期长。 由于用机器语言进行程序设计的思维和表达方式与人们的习惯大相径庭,只有经过

较长时间职业训练的程序员才能胜任,使得程序设计曲高和寡。因为它的书面形式全是"密"码,所以可读性差,不便于交流与合作。因为它严重地依赖于具体的计算机,所以可移植性差,重用性差。这些弊端造成当时的计算机应用未能迅速得到推广。

克服上述缺点的出路在于程序设计语言的抽象,让它尽可能地接近于算法语言。 为此,人们首先注意到的是可读性和可移植性,因为它们相对地容易通过抽象而得到改善。于是,很快就出现汇编语言。这种语言对机器语言的抽象,首先表现在将机器语言的每一条指令符号化:指令码代之以记忆符号,地址码代之以符号地址,使得其含义显现在符号上而不再隐藏在编码中,可让人望"文"生义。其次表现在这种语言摆脱了具体计算机的限制,可在不同指令集的计算机上运行,只要该计算机配上汇编语言的一个汇编程序。这无疑是机器语言朝算法语言靠拢迈出的一步。但是,它离算法语言还太远,以致程序员还不能从分解算法的数据、运算和控制到汇编才能直接表达的指令等繁杂琐碎的事务中解脱出来。 到了50年代中期,出现程序设计的高级语言如Fortran,Algol60,以及后来的PL/l, Pascal等,算法的程序表达才产生一次大的飞跃。

诚然,算法最终要表达为具体计算机上的机器语言才能在该计算机上运行,得到所需要的结果。但汇编语言的实践启发人们,表达成机器语言不必一步到位,可以分两步走或者可以筑桥过河。即先表达成一种中介语言,然后转成机器语言。汇编语言作为一种中介语言,并没有获得很大成功,原因是它离算法语

言还太远。这便指引人们去设计一种尽量接近算法语言的规范语言,即所谓的高级语言,让程序员可以用它方便地表达算法,然后借助于规范的高级语言到规范的机器语言的"翻译",最终将算法表达为机器语言。而且,由于高级语言和机器语言都具有规范性,这里的"翻译"完全可以机械化地由计算机来完成,就像汇编语言被翻译成机器语言一样,只要计算机配上一个编译程序。 上述两步,前一步由程序员去完成,后一步可以由编译程序去完成。在规定清楚它们各自该做什么之后,这两步是完全独立的。它们各自该如何做互不相干。前一步要做的只是用高级语言正确地表达给定的算法,产生一个高级语言程序;后一步要做的只是将第一步得到的高级语言程序翻译成机器语言程序。至于程序员如何用高级语言表达算法和编译程序如何将高级语言表达的算法翻译成机器语言表达的算法,显然毫不相干。

处理从算法语言最终表达成机器语言这一复杂过程的上述思想方法就是一种抽象。汇编语言和高级语言的出现都是这种抽象的范例。 与汇编语言相比,高级语言的巨大成功在于它在数据、运算和控制三方

面的表达中引入许多接近算法语言的概念和工具,大大地提高抽象地表达算法的能力。 在运算方面,高级语言如Pascal,除允许原封不动地运用算法语言的四则运算、逻辑运算、关系运算、算术表达式、逻辑表达式外,还引入强有力的函数与过程的工具,并让用户自定义。这一工具的重要性不仅在于它精简了重复的程序文本段,而且在于它反映出程序的两级抽象。

在函数与过程调用级,人们只关心它能做什么,不必关心它如何做。只是到函数与过程的定义时,人们才给出如何做的细节。用过高级语言的读者都知道,一旦函数与过程的名称、参数和功能被规定清楚,那么,在程序中调用它们便与在程序的头部说明它们完全分开。你可以修改甚至更换函数体与过程体,而不影响它们的被调用。如果把函数与过程名看成是运算名,把参数看成是运算的对象或运算的结果,那么

,函数与过程的调用和初等运算的引用没有两样。利用函数和过程以及它们的复合或嵌套可以很自然地表达算法语言中任何复杂的运算。

在数据方面,高级语言如Pascal引人了数据类型的概念,即把所有的数据加以分类。每一个数据(包括表达式)或每一个数据变量都属于其中确定的一类。称这一类数据为一个数据类型。 因此,数据类型是数据或数据变量类属的说明,它指示该数据或数据变量可能取的值的全体。对于无结构的数据,高级语言如Pascal,除提供标准的基本数据类型--布尔型、字符型、整型和实型外,还提供用户可自定义的枚举类、子界类型和指针类型。这些类型(除指针外),其使用方式都顺应人们在算法语言中使用的习惯。对于有结构的数据,高级语言如Pascal,提供了数组、记录、有限制的集合和文件等四种标准的结构数据类型。其中,数组是科学计算中的向量、矩阵的抽象;记录是商业和管理中的记录的抽象;有限制的集合是数学中足够小的集合的势集的抽象;文件是诸如磁盘等外存储数据的抽象。

人们可以利用所提供的基本数据类型(包括标准的和自定义的),按数组、记录、有限制的集合和文件的构造规则构造有结构的数据。 此外,还允许用户利用标准的结构数据类型,通过复合或嵌套构造更复杂更高层的结构数据。这使得高级语言中的数据类型呈明显的分层。 高级语言中数据类型的分层是没有穷尽的,因而用它们可以表达算法语言中任何复杂层次的数据。 在控制方面,高级语言如Pascal,提供了表达算法控制转移的六种方式。

(1)缺省的顺序控制";"。

(2)条件(分支)控制:"if表达式(为真)then S1 else S2;" 。

(3)选择(情况)控制:

"Case 表达式 of

值1: S1

值2: S2

值n: Sn

end"

(4)循环控制:

"while 表达式(为真) do S;" 或

"repeat S until 表达式(为真);" 或

"for变量名:=初值 to/downto 终值do S;"

(5)函数和过程的调用,包括递归函数和递归过程的调用。

(6)无条件转移goto。

这六种表达方式不仅覆盖了算法语言中所有控制表达的要求,而且不再像机器语言或汇编语言那样原始、那样繁琐、那样隐晦,而是如上面所看到的,与自然语言的表达相差无几。 程序设计语言从机器语言到高级语言的抽象,带来的主要好处是: 高级语言接近算法语言,易学、易掌握,一般工程技术人员只要几周时间的培训就可以胜任程序员的工作;高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;高级语言远离机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好,重用率高; 由于把繁杂琐碎的事务交给了编译程序去做,所以自动化程度高,开发周期短,且程、序员得到解脱,可以集中时间和精力去从事对于他们来说更为重要的创造性劳动,以提高、程序的质量。

数据结构、数据类型和抽象数据类型

数据结构、数据类型和抽象数据类型,这三个术语在字面上既不同又相近,反映出它们在含义上既有区别又有联系。

数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,物理上的数据结构反映成分数据在计算机内的存储安排。数据结构是数据存在的形式。

数据是按照数据结构分类的,具有相同数据结构的数据属同一类。同一类数据的全体称为一个数据类型。在程序设计高级语言中,数据类型用来说明一个数据在数据分类中的归属。它是数据的一种属性。这个属性限定了该数据的变化范围。为了解题的需要,根据数据结构的种类,高级语言定义了一系列的数据类型。不同的高级语言所定义的数据类型不尽相同。Pascal语言所定义的数据类型的种类。

其中,简单数据类型对应于简单的数据结构;构造数据类型对应于复杂的数据结构;在复杂的数据结构里,允许成分数据本身具有复杂的数据结构,因而,构造数据类型允许复合嵌套;指针类型对应于数据结构中成分数据之间的关系,表面上属简单数据类型,实际上都指向复杂的成分数据即构造数据类型中的数据,因此这里没有把它划入简单数据类型,也没有划入构造数据类型,而单独划出一类。

数据结构反映数据内部的构成方式,它常常用一个结构图来描述:数据中的每一项成分数据被看作一个结点,并用方框或圆圈表示,成分数据之间的关系用相应的结点之间带箭号的连线表示。如果成分数据本身又有它自身的结构,则结构出现嵌套。这里嵌套还允许是递归的嵌套。

由于指针数据的引入,使构造各种复杂的数据结构成为可能。按数据结构中的成分数据之间的关系,数据结构有线性与非线性之分。在非线性数据结构中又有层次与网状之分。 由于数据类型是按照数据结构划分的,因此,一类数据结构对应着一种数据类型。数据类型按照该类型中的数据所呈现的结构也有线性与非线性之分,层次与网状之分。一个数据变量,在高级语言中的类型说明必须是读变量所具有的数据结构所对应的数据类型。最常用的数据结构是数组结构和记录结构。数组结构的特点是:

成分数据的个数固定,它们之间的逻辑关系由成分数据的序号(或叫数组的下标)来体现。这些成分数据按照序号的先后顺序一个挨一个地排列起来。每一个成分数据具有相同的结构(可以是简单结构,也可以是复杂结构),因而属于同一个数据类型(相应地是简单数据类型或构造数据类型)。这种同一的数据类型称为基类型。所有的成分数据被依序安排在一片连续的存储单元中。 概括起来,数组结构是一个线性的、均匀的、其成分数据可随机访问的结构。

由于这、种结构有这些良好的特性,所以最常被人们所采用。在高级语言中,与数组结构相对应的、数据类型是数组类型,即数组结构的数据变量必须说明为array [i] of T0 ,其中i是数组、结构的下标类型,而T0是数组结构的基类型。 记录结构是另一种常用的数据结构。它的特点是:与数组结构一样,成分数据的个数固定。但成分数据之间没有自然序,它们处于平等地位。每一个成分数据被称为一个域并赋予域名。不同的域有不同的域名。不同的域允许有不同的结构,因而允许属于不同的数据类型。与数组结构一样,它们可以随机访问,但访问的途径靠的是域名。在高级语言中记录结构对应的数据类型是记录类型。记录结构的数据的变量必须说明为记录类型。

抽象数据类型的含义在上一段已作了专门叙述。它可理解为数据类型的进一步抽象。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。对于抽象数据类型的描述,除了必须描述它的数据结构外,还必须描述定义在它上面的运算(过程或函数)。抽象数据类型上定义的过程和函

数以该抽象数据类型的数据所应具有的数据结构为基础。

泛型设计和数据结构与算法

下面我想再说说关于泛型程序设计模型对于数据结构和算法方面的最新推动,泛型思想已经把数据结

构和算法方面的基本思想抽象到了一个前所未有的高度,现在有多种程序设计语言支持泛型设计,比如

ADA,C++,而且据说在JAVA的下一版本和C#中也将对泛型设计进行全面的支持。

先说说泛型设计的基本思想:泛型编程(generic programming,以下直接以GP称呼)是一种全新的程序设计思想,和OO,OB,PO这些为人所熟知的程序设计想法不同的是GP抽象度更高,基于GP设计的组件之间偶合度底,没有继承关系,所以其组件间的互交性和扩展性都非常高。我们都知道,任何算法都是作用在一种特定的数据结构上的,最简单的例子就是快速排序算法最根本的实现条件就是所排序的对象是存

贮在数组里面,因为快速排序就是因为要用到数组的随机存储特性,即可以在单位时间内交换远距离的对象,而不只是相临的两个对象,而如果用联表去存储对象,由于在联表中取得对象的时间是线性的既O[n],这样将使快速排序失去其快速的特点。也就是说,我们在设计一种算法的时候,我们总是先要考虑其应用的数据结构,比如数组查找,联表查找,树查找,图查找其核心都是查找,但因为作用的数据结构不同

将有多种不同的表现形式。数据结构和算法之间这样密切的关系一直是我们以前的认识。泛型设计的根本思想就是想把算法和其作用的数据结构分离,也就是说,我们设计算法的时候并不去考虑我们设计的算法将作用于何种数据结构之上。泛型设计的理想状态是一个查找算法将可以作用于数组,联表,树,图等各种数据结构之上,变成一个通用的,泛型的算法。这样的理想是不是很诱惑人?

泛型编程带来的是前所未有的弹性以及不会损失效率的抽象性,GP和OO不同,它不要求你通过额外的间接层来调用函数:它让你撰写完全一般化并可重复使用的算法,其效率与针对特定数据结构而设计的算法旗鼓相当。我们大家都知道数据结构在C++中可以用用户定义类型来表示,而C++中的模板技术就是以类型作为参数,那么我可以想象利用模板技术可以实现我们开始的GP思想,即一个模板函数可以对于各种传递进来的类型起作用,而这些类型就可以是我们定义的各种数据结构。

泛型算法抽离于特定类型和特定数据结构之外,使得其适应与尽可能的一般化类型,算法本身只是为了实现算法其需要表达的逻辑本质而不去被为各种数据结构的实现细节所干扰。这意味着一个泛型算法实际具有两部分。1,用来描叙算法本质逻辑的实际指令;2,正确指定其参数类型必须满足的性质的一组需求条件。到此,相信有不少人已经开始糊涂了,呵呵,不要紧。毕竟GP是一种抽象度非常高的程序设计思想,里面的核心就是抽象条件成为成为程序设计过程中的核心,从而取代了类型这在OO里面的核心地位,正是因为类型不在是我们考虑的重点,类型成为了抽象条件的外衣,所以我们称这样的程序思想为泛型思想------把类型泛化。

一个数据结构的ADT描述是ADT的界面,它包括哪几部分?

一个ADT可描述为:ADT ADT-Name{ Data://数据说明 数据元素之间逻辑关系的描述 Operations://操作说明 Ope...
点击下载
热门文章
    确认删除?
    回到顶部