过冷奥氏体高温,中温,低温转变的性质与相变特点

栏目:资讯发布:2023-11-20浏览:2收藏

过冷奥氏体高温,中温,低温转变的性质与相变特点,第1张

过冷奥氏体转变产物及其性能与相变特点:

(1)珠光体型转变

A1~550℃温度范围形成珠光体型转变,转变温度较高,也称为高温转变,其碳原子发生完全扩散形成渗碳体,因此又称为扩散型转变。

珠光体是由共析铁素体和共析渗碳体(或碳化物)有机结合的整合组织,两相具有一定的比例和相对量,珠光体(Pearlite)用符号P表示

渗碳体呈层片状分布在铁素体基体上,按层间距珠光体型组织分为珠光体、细珠光体(索氏体S)和极细珠光体(屈氏体或托氏体T)

A1~650℃形成珠光体,片层较厚,片层间距>04μm,400倍光镜下可辨,珠光体(Pearlite)用符号P表示

650~600℃形成细珠光体,片层较薄,片层间距02~04μm, 800~1000倍光镜下可辨,过去称为索氏体(Sorbite),故用符号S表示

600~550℃形成极细珠光体,片层极薄,片层间距<02μm,电镜下可辨,过去称为屈氏体或托氏体(troostite)用符号T表示。

三种组织无本质区别,只是形态上的粗细之分,因此其界限也是相对的。

珠光体型组织的性能主要取决于片层间距,片层间距越小,相界面越多,塑性变形越困难,钢的强度、硬度越高,而塑性和韧性略有改善。

(2)贝氏体型转变

550℃~Ms温度形成贝氏体型转变,属于中温转变。由于转变温度降低,只有部分碳扩散出,还有部分碳留在铁素体内,因此也称为半扩散型转变。贝氏体(Bainite)用符号B表示。

贝氏体又分为上贝氏体(B上)和下贝氏体(B下)。

350~550℃温度范围内的转变产物称为上贝氏体。上贝氏体在光镜下呈羽毛状,在电镜下为不连续棒状的渗碳体,分布于自奥氏体晶界向晶内平行生长的铁素体条之间。其形成温度较高,条状或片状铁素体从奥氏体晶界开始向晶内以同样方向平行生长,随着铁素体的伸长和变宽,其中的碳原子向条间的奥氏体中富集,当浓度足够高时,便在铁素体内间断续地析出渗碳体短棒,奥氏体消失,形成典型的羽毛状上贝氏体,上贝氏体中的铁素体片较宽,塑性变形抗力较低,且渗碳体分布在铁素体片之间,易引起脆断,强度和韧性都较差。

350℃~ Ms温度范围形成下贝氏体。下贝氏体在光镜下呈竹叶状,即黑色针状,在电镜下为细片状碳化物,分布于铁素体针上,并与铁素体针长轴方向呈55°~60°,其形成温度较低,碳原子扩散能力更差,铁素体在奥氏体的晶界或某些晶面上长成针状,碳原子在铁素体内一定的晶面上以断续碳化物小片的形式析出,从而形成了下贝氏体,

下贝氏体中铁素体针细小,无方向性,碳过饱和度大,碳化物分布均匀,弥散度大,位错密度高,所以硬度高,韧性好,有实际应用价值。

(3)马氏体型转变

Ms~Mf温度范围形成马氏体型转变 ,由于转变温度低,属于低温转变。转变温度低,铁原子和碳原子都不能够扩散,因此又称为非扩散型转变。

马氏体是碳在α-Fe中的过饱和固溶体,其含碳量超过碳在α-Fe中的饱和含碳量,马氏体(Martensite)通常用M表示。

马氏体转变时,奥氏体中的碳全部保留到α-Fe中,马氏体与奥氏体化学成分完全相同,但是晶体结构不同。

马氏体型转变是强化钢的重要途径之一。

马氏体型转变的特点:

①马氏体型转变的非扩散性:马氏体型转变在较低温度下进行,铁及碳原子都不能进行扩散,因此马氏体实际是碳在α-Fe中的过饱和固溶体,晶体结构仍为体心立方结构,但由于碳的溶入使原体心立方结构变成体心正方结构,即 c轴伸长,因此马氏体具有体心正方晶格( a=b≠c),轴比 c/a称为马氏体的正方度。马氏体中的含碳量越高,正方度越大,晶格畸变越严重。

②马氏体型转变的非恒温性:马氏体型转变速度极快,片状马氏体的长大速度为106~107mm/s,板条马氏体的长大速度为102~103mm/s。马氏体型转变与其他转变不同,是在连续冷却过程(变温)中形成的,当过冷奥氏体温度降到Ms点以下任一温度时,马氏体型转变以极快速度进行,但转变很快停止。为了使转变继续进行,必须继续降低温度。马氏体量只取决于转变温度,与保温时间无关,表现出组织转变的非恒温性

③马氏体型转变的不完全性:当温度降到某一温度以下时,虽然马氏体转变量未达到100%,但转变已不能进行,该温度称为马氏体型转变终了温度,用Mf表示。此时将有一部分奥氏体未转变而被保留下来,称为残余奥氏体,用Ar 表示。残余奥氏体将对马氏体的塑性有一定的贡献。

④马氏体比容增大:在马氏体、奥氏体、珠光体三种组织中,奥氏体比容最小,马氏体比容最大,并且马氏体含碳量越大,其比容也越大。因此,从奥氏体转变为马氏体后会导致体积膨胀。由于工件各部位的形状和尺寸往往不一致,造成了体积膨胀的不一致,从而产生了内应力,这是导致钢在淬火时发生变形甚至开裂的重要原因。

马氏体常见的形态:

1、板条马氏体:其立体形态为细长的扁棒状,在光学显微镜下为一束束的细条组织,每束内条与条之间尺寸大致相同并呈平行排列,一个奥氏体晶粒内可形成几个取向不同的马氏体束,板条内的亚结构主要是高密度的位错,又称为位错马氏体,其含碳量低, 也叫作低碳马氏体。板条马氏体具有较好的塑性和韧性

2、片状马氏体:其立体形态为双凸透镜形的片状,与试样磨面相截则呈针状或竹叶状,所以又称为针状马氏体,其含碳量较高,也叫作高碳马氏体。在电镜下,其亚结构主要是孪晶,又称为孪晶马氏体。

马氏体的形态主要取决于其含碳量:

当Wc<02%时,几乎全部是板条马氏体;

当Wc>10%时,几乎全部是片状马氏体

当02%≤Wc≤10%时,为板条马氏体+片状马氏体的混合组织。

马氏体是一种高强度、高硬度的组织,由于马氏体型组织中碳过饱和度很大,晶格畸变非常严重,所以其强度大大提高。含碳量越高,强度、硬度越高,

板条马氏体的亚结构是大量的位错,给塑性变形提供了便利条件,板条马氏体的各板条是平行排列的,塑性变形 抗力小,因此板条马氏体具有较好的塑性和韧性,

片状马氏体的亚结构是大量的孪晶,塑性变形困难。马氏体的片是相交的,容易碰撞而开裂,晶格畸变较大,有很多的显微裂纹,脆性大,但由于有一定量的残余奥氏体,因此具有一定的韧性。

HSS:高强钢(high strength steel), AHSS先进高强度钢:(advanced high strength steel) ,是基于高强度钢(HSS)提出来的

AHSS

先进高强度钢,国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。传统高强钢、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相(DP) 钢、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相(CP) 钢、热成形(HF) 钢、孪晶诱导塑性(TWIP) 钢和淬火分离(QP)钢;AHSS的强度 在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。

先进高强度钢,也称为高级高强度钢,其英文缩写为AHSS(Advanced High Strength Steel)。国际钢铁协会( IISI) 先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS) 和先进高强钢(AHSS) 。

传统高强钢主要包括碳锰钢(C -Mn)、烘烤硬化(BH) 钢、高强度无间隙原子(HSS -IF) 钢和高强度低合金(HSLA) 钢;AHSS 主要包括双相钢(DP)、相变诱导塑性(TRIP) 钢、马氏体(M) 钢、复相钢(CP)、热成形(HF) 钢和孪晶诱导塑性(TWIP) 钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢最早于1983年由瑞典SSAB钢板有限公司实现量产。

双相钢

双相钢组成是铁素体基体包含一个坚硬的第二相马氏体。通常强度随着第二相的体积分数的增加而增加。在某些情况下,热轧钢需要在边缘提高抗拉强度(典型的措施是通过空穴的扩张能力),这样热轧钢便需要具有了大量的重要的贝氏体结构。

在双相钢中,在实际冷却速度中形成的马氏体中的碳式钢的淬硬性增加。锰、铬、钼、钒、和镍元素单独添加或联合添加也能增加钢的淬硬性。碳、硅和磷也加强了作为铁素体溶质的马氏体的强度。

高强度钢

高强度及高延性钢的微观组织是在铁素体基体中还保留着残余奥氏体组织。除了体积分数最少为5%的残余奥氏体外,还存在着不同数额的马氏体和贝氏体等坚硬组织。

多相钢

具有代表性的多相钢需要很高的抗拉强度极限才能转变成钢。多相钢的组成是有细小的铁素体组织和体积分数较高的坚硬的相,并且细小的沉淀使其强度进一步加强。和双相钢和高强度、高延性钢一样,多相钢也包含了很多和它们相同的合金元素,但也经常有少量的铌、钛、和钒形成细小的、高强度的沉淀物。在抗拉强度值在800MPa或更高时,多相钢表现出了更高的屈服强度。多相钢的典型特征是具有高的成形性、很高的能量吸收和很高的残余变形能力。

马氏体钢

为了生成马氏体钢,在热轧或退火中存在的奥氏体在淬火和连续退火曲线中的冷却阶段全部转变成马氏体。该结构也会在成形后的热处理过程中形成。马氏体钢具有非常高的强度,抗拉强度极限达到了1700MPa。马氏体钢经常需要用等温回火来提高其韧性,这样便能在具有极高的强度的同时具有很好的成形性。

所有的先进高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在最后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。

高速钢(HSS)是一种具有高硬度、高耐磨性和高耐热性的工具钢,又称高速工具钢或锋钢,俗称白钢。高速钢是美国的FW泰勒和M怀特于1898年创制的。

高速钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等。除用熔炼方法生产的高速钢外,20世纪60年代以后又出现了粉末冶金高速钢,它的优点是避免了熔炼法生产所造成的碳化物偏析而引起机械性能降低和热处理变形。

安米集团北美公司推出新AHSS产品

安米集团北美公司推出了Fortiform®980 Extragal®新产品,扩展了其AHSS产品系列范围。该钢种专为汽车行业设计,用于解决液态金属脆化和最佳焊接强度等问题,这些问题对车辆在碰撞过程中受到影响的结构部件(包括前后轨)至关重要。此外,新钢种与传统AHSS相比,在减重高达20%的同时能够满足汽车日益严格的碰撞及安全要求。

安米集团印第安纳州研究中心首席研究工程师Hassan Ghassemi Armaki说道:“冷冲压用新型Fortiform®980 Extragal®系列AHSS产品性能在超越第二代AHSS产品的同时,拥有更高的强度和优异的成形性、延展性,为AHSS在车身工程中应用开拓了重要的新机遇。对于汽车生产商而言,这是一个至关重要的优势,因为它们正面临车辆进一步减重的压力,而车辆减重是提高燃油经济性战略的一部分。”

目前新钢种仅提供给北美市场,并很快将在欧洲推出。

汽车用先进高强钢(AHSS)的“代沟”

近年来,常规钢种的利润越来越微薄,而汽车用先进高强钢作为有一定技术门槛,且符合“高强减薄”环保理念的产品,发展趋势和利润都相当不错,也是大家比较关心的一类高附加值产品。

汽车用先进高强钢每一代每一款钢种都有其特点,常规性能看上去相近但不能混用。本文虽然会有些枯燥,但是花点时间学习,了解他们的特性,对于提高工作效率还是非常有帮助的。

汽车用先进高强钢目前的发展状况

近几十年来,汽车用先进高强度钢(AHSS-Advanced High Strength Steel)是材料的研发重点,目前世界钢协根据研发历史及其特点,将之分为三代。

第一代以铁素体为基的AHSS钢的强塑积为15 GPa%以下;

第二代以奥氏体为基的AHSS钢的强塑积为50 GPa%以上,其合金含量高和生产工艺控制困难导致成本高,因此正研发第三代多相AHSS钢,通过多相、亚稳和多尺度的组织精细调控,其强塑积约为20 -40GPa%。

第三代AHSS钢以提高第一代AHSS钢强度、塑性和降低第二代AHSS合金含量、生产成本两方面进行研发。现有及已发中的AHSS钢种大致分布情况如下图。

基于延伸率--抗拉强度关系的现有及开发中的

AHSS“香蕉图”

注:强塑积=抗拉强度 × 延伸率(单位为GPa%),用于简单评价强度和塑形的平衡关系。

三代汽车用先进高强钢的区别和特点

第一代

主要包括双相( DP)钢、多相( CP)钢和相变诱导塑性( TRIP)钢,铁素体贝氏体钢(FB/SF),马氏体钢(MS/PHS)等。

第一代合金含量低,主要是以铁素体为主的多相显微组织。双相钢是目前使用最多的一种先进高强钢,除了强度高、成型性好外,还具有易于焊接加工的优点。TRIP钢兼具良好的强度和延伸性能,其残余奥氏体相通过应变诱导相变转化成马氏体相,从而提高了应变硬化指数。第一代AHSS的屈服强度通常不小于280/300 MPa,抗拉强度不小于590/600 MPa,其成形性能优于同等强度级别的HSLA。

第二代

包括奥氏体孪晶诱导塑性( TWIP) 钢、诱导塑性轻钢(L-IP)和剪切带强化(SIP)钢。第二代先进高强钢机械虽然有很高的强度和极好的塑性,但是由于其含有大量的Mn元素,成本很高,而且具有较低的屈服强度(约280MPa),对于结构件是不利的。此外,这些合金的加工难度非常大,而且TWIP钢还易于产生延迟裂纹。第二代AHSS的抗拉强度通常在1000 MPa ,断后伸长率通常为50–60 %。

第三代

第三代的特征是微观组织为马氏体(贝氏体)和奥氏体的混合组织。目前认为,这类钢中包括TBF钢(TRIP Aided Bainitic Ferrite steels),中锰钢(medium Mn-Trip),QP钢(Quenching-Partitioning Steel)等;这类钢主要考虑了对钢的使用性能要求(高强度,高延性),同时也兼顾了经济性(Affordable)。

TBF钢它的组织特征是无碳化物板条状贝氏体基体及较大体积分数的残余奥氏体,与同等强度级别的第一代AHSS相比,它的成形性能更好,并且具有良好的翻边扩孔性能,并且,通过贝氏体铁素体晶粒的进一步细化,其强度有望进一步提高,通过相变诱导塑性效应,提高材料的延展性能。这类钢已经实现了商业化生产。

中锰钢,其Mn含量约为4-12%,它的强度和塑性均符合第三代AHSS的特征,它的残余奥氏体组织的体积分数较大。目前暂未实现批量生产,但在宝钢已经完成了试制。这类钢的主要合金元素为Mn,并添加了一定比例的Si/Al和其他微合金元素,其C含量较低。通过不同的热处理工艺可获得不同的显微组织结构,可获得的钢的强度范围较大。

QP钢(淬火延性钢),的组织特征是马氏体与残余奥氏体的混合组织,这种特征的显微组织是通过Q&P工艺获得的。Q&P热处理工艺获得的钢,不仅仅具有高的抗拉强度及断后伸长率的乘积,并且与同等强度级别的其他类型显微组织的钢相比(DP, TRIP, Q&T),具有更高的屈强比(YS/TS ratio)和更高的扩孔性能,宝钢是全球首个实现QP钢商业化生产的大型钢铁联合企业。

根据网络资料"常州精密钢管博客网"整理

首先要了解下这两种物质的本质。马氏体(martensite)是黑色金属材料的一种组织名称。这里我们仅仅讨论下铁基材料。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。马氏体的三维组织形态通常有针状(plate)或者板条状(lath),在低碳钢中呈现板条状的形态,在含碳量较高的时候呈现针状。

托氏体的本质:是珠光体的一种。也是铁素体和渗碳体的机械混合物。片层比珠光体要细的多。在光学显微镜下无法区分片层,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量比较多的时候,呈大块黑色团状,只有在电子显微镜下才能分辩其中的片层。

 

图一:马氏体+托氏体

弄清了马氏体和托氏体的形态后就再弄清回火马氏体和回火托氏体形态。

前面所说的马氏体也可以称之为淬火马氏体,回火马氏体比淬火马氏体易受腐蚀,在光学显微镜下呈暗黑色片状组织。在电子显微镜下可以观察到片状α相内分布着薄片状ε碳化物,两者保持共格联系。低碳板条状马氏体低温回火后,只是碳原子的偏聚,与淬火马氏体没有明显的差别。回火马氏体保留了原马氏体形态特征。针状马氏体回火析出了极细的碳化物,容易受到侵蚀,在显微镜下呈黑色针状。低温回火后马氏体针变黑,而残余奥氏体不变仍呈白亮色。

回火屈氏体。是中温回火组织(350-500℃)。回火屈氏体是铁素体与粒状渗碳体组成的极细混合物。铁素体基体基本上保持了原马氏体的形态(条状或针状),第二相渗碳体则析出在其中,呈极细颗粒状,用光学显微镜极难分辩。

 

图二:500X(回火托氏体)

有了以上的基础知识,我们就可以很容易的辨别回火马氏体和回火托氏体了。

不同的金相,不同位置拍摄的金相可能不一样。拿图一来说吧,这个金相里面包含了马氏体和托氏体,在光学显微镜下,你是可以清晰的看到马氏体的形态呈现板条状或者针状,而回火托氏体就是黑色的,在普通光学显微镜下根本看不到片层状的结构。如果回火托氏体很多的话就是黑乎乎的一团了。

而图二拍摄的就是整个是回火托氏体的一张照片了,这里回火托氏体是白亮的淬火马氏体经中温回火马氏体析出弥漫状的小颗粒碳化物,而使基体容易浸蚀变黑。这里看到的白色的极细小亮点就是粒状的渗碳体颗粒了。黑色的物质就是回火托氏体了,剩下的白色区域就是基体了。

另外在实际研究中结合金相和显微硬度的方法来区分,因为这两种物质的硬度不一样。打一下显微硬度就可以区分了。

  硬度不均匀的原因与本身材质、感应器、感应加热工艺、淬火冷却多种因素有关。

  一、回火马氏体和淬火马氏体的组织差异:

  回火马氏体的目的是消除残余奥氏体,其组织为马氏体组织

  淬火马氏体其组织内有一些残余奥氏体组织

  二、不同回火温度下的马氏体组织:

  低温回火(150-250℃) 所得到的组织是回火马氏体,其性能是:具有高的硬度(HRC58-64)和高的耐磨性,因内应力有所降低,故韧性有所提高这种回火方法主要用于刃具,量具,拉丝模以及其它要求硬而耐磨的零件

  钢淬火后的组织是马氏体及少量残余奥氏体,它们都是不稳定的组织,都有向稳定的组织(铁素体和渗碳体两相混合物)转变的倾向但在室温下,原子活动能力很差,这种转变速度极慢随着回火温度的升高,原子活动能力加强,组织转变便以较快的速度进行由于组织的变化,钢的性能也发生相应的变化

  按回火温度的不同,回火时淬火钢的组织转变可分为四个阶段

  1 80-200℃马氏体分解,当钢加热到约80℃时,其内部原子活动能力有所增加,马氏体中的过饱和碳开始逐步以碳化物的形式析出,马氏体中碳的过饱和程度不断降低,同时,晶格畸变程度也减弱,内应力有所降低

  这种出过饱和程度较低的马氏体和极细的碳化物所组成的组织,称为回火马氏体

  2 200-300℃残余奥氏体分解,当钢加热温度超过200℃时,马氏体继续分解,同时,残余奥氏体也开始分解,转变为下贝氏体或回火马氏体,到300℃时,残余奥氏体的分解基本结束

  3 300-400℃渗碳体的形成,钢在回火的这一阶段,从过饱和固溶体中析出的碳化物转变为颗粒状的渗碳体(Fe3C)当温度达到400℃时,α固溶体中过饱和的碳已基本完全析出,α-Fe晶格恢复正常,由过饱和固溶体转变为铁素体钢的内应力基本清除

  4 400℃以上渗碳体的聚集长大,在第三阶段结束时,钢内形成了细粒状渗碳体均匀分布在铁素体基体上的两相混合物,随着回火温度的升高,渗碳体颗粒不断聚集而长大根据混合物中渗碳体颗粒大小,可将回火组织分为二种:400-500℃内形成的组织,渗碳体颗粒很细小,称为回火屈氏体温度升高到500-600℃时,得到细小的粒状渗碳体和铁素体的机械混合物,称为回火索氏体。

炉冷V1:随炉冷却(相当于退火),比较缓慢,它分别与C曲线的转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。(珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。)

空冷V2:在空气中冷却(相当于正火),它分别与C曲线的转变开始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断其转变产物为索氏体,硬度25~35HRC。在中等硬度情况下,洛氏硬度HRC与布氏硬度HBS之间关系约为1:10。(索氏体:钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。属于珠光体类型的组织,但其组织比珠光体组织细。将淬火钢在450-600℃进行回火,所得到的索氏体称为回火索氏体(tempered sorbite)。回火索氏体中的碳化物分散度很大,呈球状。故比索氏体具有更好的机械性能。这就是为什么多数结构零件要进行调质处理(淬火+高温回火)的原因。 索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体,其实质是一种珠光体,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(250~350nm),碳在铁素体中已无过饱和度,是一种平衡组织。)

油冷V3:在油中的冷却(相当于在油中淬火),与C曲线的转变开始线交于5、6点,没有与转变终了线相交,所以仅有一部分过冷奥氏体转变为托氏体,其余部分在冷却至Ms线以下转变为马氏体组织。因此,转变产物应是托氏体和马氏体的混合组织,硬度45~55HRC。(托氏体/屈氏体:troostite ,奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。是一种最细的珠光体类型组织,其组织比索氏体组织还细。钢经淬火后在300~450℃回火所得到的屈氏体称为回火屈氏体,是过冷奥氏体冷却到350~ 500℃左右形成的片间距约为300~800nm的珠光体。)(马氏体/麻田散铁,是纯金属或合金从某一固相转变成另一固相时的产物;马氏体最先在淬火钢中发现,是由奥氏体转变成的,是碳在α铁中的过饱和固溶体。马氏体的开始和终止温度,分别称为M始点和M终点;钢中的马氏体在显微镜下常呈针状,并伴有未经转变的奥氏体(残留奥氏体);钢中的马氏体的硬度随碳量增加而增高;高碳钢的马氏体的硬度高而脆,而低碳钢的马氏体具有较高的韧性。)

水冷V4:在水中冷却(相当于在水中淬火的),它不与C曲线相交,过冷奥氏体将直接冷却至Ms以下进行马氏体转变。最后得到马氏体和残余奥氏体组织,硬度55~65HRC。

1

合金元素对加热时相转变的影响

合金元素影响加热时奥氏体形成的速度和奥氏体晶粒的大小。

(1)对奥氏体形成速度的影响:

Cr、Mo、W、V等强碳化物形成元素与碳的亲合力大,

形成难溶于奥氏体的合金碳化物,

显著减慢奥氏体形成速度;Co、Ni等部分非碳化物形成元素,

因增大碳的扩散速度,

使奥氏体的形成速度加快;Al、Si、Mn等合金元素对奥氏体形成速度影响不大。

(2)对奥氏体晶粒大小的影响:大多数合金元素都有阻止奥氏体晶粒长大的作用,

但影响程度不同。强烈阻碍晶粒长大的元素有:V、Ti、Nb、Zr等;中等阻碍晶粒长大的元素有:W、Mn、Cr等;对晶粒长大影响不大的元素有:Si、Ni、Cu等;促进晶粒长大的元素:Mn、P等。

2

合金元素对过冷奥氏体分解转变的影响

除Co外,

几乎所有合金元素都增大过冷奥氏体的稳定性,

推迟珠光体类型组织的转变,

使C曲线右移,

即提高钢的淬透性。常用提高淬透性的元素有:Mo、Mn、Cr、Ni、Si、B等。必须指出,

加入的合金元素,

只有完全溶于奥氏体时,

才能提高淬透性。如果未完全溶解,

则碳化物会成为珠光体的核心,

反而降低钢的淬透性。另外,

两种或多种合金元素的同时加入(如,

铬锰钢、铬镍钢等),

比单个元素对淬透性的影响要强得多。

除Co、Al外,

多数合金元素都使Ms和Mf点下降。其作用大小的次序是:Mn、Cr、Ni、Mo、W、Si。其中Mn的作用最强,

Si实际上无影响。Ms和Mf点的下降,

使淬火后钢中残余奥氏体量增多。残余奥氏体量过多时,可进行冷处理(冷至Mf点以下),

以使其转变为马氏体;

或进行多次回火,

这时残余奥氏体因析出合金碳化物会使Ms、Mf点上升,

并在冷却过程中转变为马氏体或贝氏体(即发生所谓二次淬火)。

3

合金元素对回火转变的影响

(1)提高回火稳定性

合金元素在回火过程中推迟马氏体的分解和残余奥氏体的转变(即在较高温度才开始分解和转变),

提高铁素体的再结晶温度,

使碳化物难以聚集长大,因此提高了钢对回火软化的抗力,

即提高了钢的回火稳定性。提高回火稳定性作用较强的合金元素有:V、Si、Mo、W、Ni、Co等。

18Cr2Ni4WA钢是具有高强度、高韧性和高淬透性的高级优质渗碳钢,这种钢渗碳后空冷时,表面层组织为马氏体+大量的残余奥氏体(因表面层的Ms点很低),这种组织对以后的淬火不利,再重新淬火时,容易恢复渗碳时所形成的较粗大的奥氏体晶粒,而且淬火后残余奥氏体较多,因此,在淬火加热前先进行一次高温回火,高温回火使马氏体分解为回火索氏体,同时残余奥氏体中将析出含有铬的碳化物,因而使残余奥氏体的马氏体点升高,在回火后的冷却过程中残余奥氏体将全部分解,这种高温回火称为催化或促变处理,由于高温回火能够使碳化物形成元素铬在碳化物中富集,并使碳化物聚集,所以在淬火重新加热时,含铬的碳化物溶解较慢,奥氏体中的碳和铬的含量减少,淬火冷却后的组织较细而残余奥氏体量较少。所以从以上分析可知:

经过你的方法处理,钢的组织是内部回火索氏体组织,表面回火索氏体+微小的碳化物组织(表面经过渗碳处理,已经是过共析钢)。

  铁素体:铁素体晶界

圆滑,晶内很少见孪晶或滑移线,颜色浅绿、发亮,深腐蚀后发暗。钢中铁素体以片状、块状、针状和网状存在。纯铁素体组织具有良好的塑性和韧性,但强度和硬

度都很低;冷加工硬化缓慢,可以承受较大减面率拉拔,但成品钢丝抗拉强度很难超过1200MPa。常用铁素体钢丝有铁素体不锈钢丝(0Cr17)和铁-铬

-铝电热合金丝(0Cr25Al5)等。

  奥氏体:观察Mn13或奥氏体钢1Cr18Ni9Ti的钢丝金相组织可发现,奥氏体的晶界比较直,晶内有孪晶或滑移线。淬火钢中的残余奥氏体分布在马氏体的空隙处,颜色浅黄、发亮。

  渗碳体:钢中渗碳体

以各种形态存在,外形和成分有很大差异。一次渗碳体多在树枝晶间处析出,呈块状,角部不尖锐;共晶渗碳体呈骨骼状,破碎后呈多角形块状;二次渗碳体多在晶

界处或晶内,可能是带状、网状或针状;共析渗碳体呈片状,退火、回火后呈球状或粒状。在金相图谱中渗碳体白亮,退火状态呈珠光色。一次渗碳体和破碎的共晶

渗碳体只有在莱氏体钢丝,如9Cr18、Cr12、Cr12MoV和W18Cr4V中才能见到,只要热加工工艺得当,冷拉用盘条中的一次渗碳体块度应较

小、无尖角,共晶碳化物应破碎成小块、角部要圆滑,否则根本无法拉拔,渗碳体带轻度棱角的盘条,可以通过正火后球化退火+轻度(Q020%)拉拔+高温再

结晶退火的方法加以挽救。带状和网状渗碳体也是拉丝用盘条中不应出现的组织,这两种组织提高钢的脆性,不利于钢丝加工成形,显著降低成品钢丝的切削性能和

淬火均匀性,对网状25级的盘条可用正火的方法改善网状,一般来说钢丝经冷拉-退火两次以上循环,网状可降低05-1级。

  珠光体:珠光体是由片状铁素体和渗碳体组成的混合物,其中渗碳体的质量分数为12%,铁素体的质量分数为88%,两者密度相近,在金相图谱中铁素体呈宽条状,渗碳体呈窄条状。

  莱氏体:常温下,莱

氏体是珠光体、渗碳体和共晶渗碳体的混合物。在高温下形成的共晶渗碳体呈鱼骨状或网状分布在晶界处,经热加工破碎后,变成块状,沿轧制方向链状分布,其块

度和形状对冷加工性能有决定性的影响,热加工变形程度不足、终锻或终轧温度偏高,往往造成共晶渗碳体块度大,带明显的尖角,这样的盘条根本无法冷拔。莱氏

体钢丝热处理的目标是,使经冷拔逐步破碎的共晶渗碳体逐步球化。

过冷奥氏体高温,中温,低温转变的性质与相变特点

过冷奥氏体转变产物及其性能与相变特点:(1)珠光体型转变A1~550℃温度范围形成珠光体型转变,转变温度较高,也称为高温转变,其碳原子发...
点击下载
热门文章
    确认删除?
    回到顶部