求历史上最伟大的十二位数学家的资料!
楼主给你这些你看够不?给分吧
在我看来,以下非常牛X:
第一位:“数学之神”——阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正因为他的杰出贡献,美国的ET贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
第二位:祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=314,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在31415926与31415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
第三位:数学之父——塞乐斯
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。 塞乐斯最先证明了如下的定理:
1圆被任一直径二等分。
2等腰三角形的两底角相等。
3两条直线相交,对顶角相等。
4半圆的内接三角形,一定是直角三角形。
5如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。
第四位:数学奇才——伽罗华
1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
他去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
第五位:欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。 欧拉是科学史上最多产的一位杰出的 数学家欧拉
数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。" 过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。 欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了”。欧拉终于“停止了生命和计算”。
第六位:高斯
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月 高斯
23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 高斯虽然幼时家境贫困,但聪敏异常,受一贵族资助进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 1792年,15岁的高斯进入Braunschweig学院。在那里,高斯开始对高等数学作研究。独立发现了二项式定理的一般形式、数论上的“二次互反律”(Law of Quadratic Reciprocity)、“质数分布定理”(prime numer theorem)、及“算术几何平均”(arithmetic-geometric mean)。 1795年高斯进入哥廷根大学。1796年,19岁的高斯得到了一个数学史上极重要的结果,就是《正十七边形尺规作图之理论与方法》。5年以后,高斯又证明了形如"Fermat素数"边数的正多边形可以由尺规作出。 1855年2月23日清晨,高斯于睡梦中去世。
第七位:牛顿
艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。
第八位:近代科学的始祖:笛卡尔
勒奈·笛卡尔(Rene Descartes),1596年3月31日生于法国都兰城。笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的创始人。笛卡儿是欧洲近代资产阶级哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。笛卡儿堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
第九位:莱布尼茨
戈特弗里德·威廉·凡·莱布尼茨,德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
第十位:拉格朗日
约瑟夫·拉格朗日,全名约瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange 1735~1813)法国数学家、物理学家。1736年1月25日生于意大利都灵,1813年4月10日卒于巴黎。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。
近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。被誉为“欧洲最大的数学家”。
第十一位:业余数学家之王——费马
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于艾萨克·牛顿、戈特弗里德·威廉·凡·莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学天才费马堪称是17世纪法国最伟大的数学家之一。
第十二位:华罗庚
华罗庚(19101112—1985612),世界著名数学家,中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。
第十三位:刘徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
第十四位:毕达哥拉斯
毕达哥拉斯(Pythagoras,572 BC—497 BC)古希腊数学家、哲学家。无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的毕达哥拉斯。 毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及(有争议),吸收了阿拉伯文明和印度文明(公元前480年)。
第十五位:泰勒斯
古希腊时期的思想家、科学家、哲学家,希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人。希腊七贤之一,西方思想史上第一个有记载有名字留下来的思想家。“科学和哲学之祖”,泰勒斯是古希腊及西方第一个自然科学家和哲学家。泰勒斯的学生有阿那克西曼德、阿那克西米尼等。
泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信不疑。他曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交、对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆所对的圆周角是直角”等,这些定理虽然简单,而且古埃及、古巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。据说,一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题。泰勒斯很有把握地说可以,但有一个条件——法老必须在场。第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓。泰勒斯来到金字塔前,阳光把他的影子投在地面上。每过一会儿,他就让别人测量他影子的长度,当测量值与他的身高完全吻合时,他立刻将大金字塔在地面的投影处作一记号,然后在丈量金字塔底到投影尖顶的距离。这样,他就报出了金字塔确切的高度。在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理。也就是今天所说的相似三角形定理。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
1、古希腊数学家和物理学家阿基米德
2、古希腊数学家及哲学家毕达哥拉斯
3、古希腊数学家、天文学家阿纳克萨哥拉斯
4、古希腊数学家欧几里德
5、古希腊数学家塔利斯
6、古希腊数学家欧多克索斯
7、古希腊数学家兼哲学家齐诺〔曾属于哥达华拉斯学派〕
8、古希腊数学家泰利思
9、古希腊数学家丢番图
10、古希腊数学家开卜勒
11、古希腊第一个数学家和哲学家,希腊最早的哲学学派——爱奥尼亚学派的创始人泰勒斯
12、古希腊数学家普洛克拉
13、古希腊天文学家、地理学家和数学家托勒密
14、古希腊数学家埃拉托色尼
15、古希腊数学家Pappus
16、古希腊著名哲学家、数学家和教育家柏拉图
17、古希腊数学家佩波斯
18、古希腊数学家戴奥芬多斯
19、古希腊伟大的数学家、力学家Archimedes
一下详细介绍五位:
1、阿基米德
阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家, 静态力学和流体静力学的奠基人, 并且享有“ 力学之父”的美称 ,阿基米德和高斯、牛顿并列为世界三大数学家。
阿基米德曾说过:“给我一个支点,我就能撬起整个地球。
”阿基米德确立了静力学和流体静力学的基本原理。
给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。
公元前267年,也就是阿基米德十一岁时,阿基米德被父亲送到埃及的亚历山大城跟随欧几里得的学生埃拉托塞和卡农学习。
阿基米德在亚历山大跟随过许多著名的数学家学习,包括有名的几何学大师—欧几里德,阿基米德在这里学习和生活了许多年,他兼收并蓄了东方和古希腊的优秀文化遗产,对其后的科学生涯中作出了重大的影响,奠定了阿基米德日后从事科学研究的基础。
阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。
他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
阿基米德将欧几里德提出的趋近观念作了有效的运用。
他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。
阿基米德还利用割圆法求得π的值介于314163和314286之间。
另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。
2、泰勒斯
泰勒斯,古希腊时期的思想家、科学家、哲学家,出生于爱奥尼亚的米利都城,创建了古希腊最早的哲学学派,是希腊最早的哲学学派——米利都学派(也称爱奥尼亚学派)的创始人。
希腊七贤之一 , 西方思想史上第一个有记载有名字留下来的思想家 , 被称为“ 科学和哲学之祖”。
泰勒斯是古希腊及西方第一个自然科学家和哲学家。
泰勒斯的学生有阿那克西曼德、阿那克西美尼等。
他是第一个提出“世界的本原是什么”并开启了哲学史的“本体论转向”的哲学家,被后人称为“希腊七贤之一”和“哲学和科学的始祖”,是学界公认的“哲学史第一人”。
泰勒斯的思想影响了赫拉克利特等哲学家。
泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。
它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。
在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信不疑。
3、毕达哥拉斯
毕达哥拉斯(约公元前580年~约前500(490)年)古希腊数学家、哲学家。
毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛)的贵族家庭,自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。
因为向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——巴比伦和印度,以及埃及(有争议),吸收了美索不达米亚文明和印度文明(公元前480年)的文化。
后来他就到意大利的南部传授数学及宣传他的哲学思想,并和他的信徒们组成了一个所谓「毕达哥拉斯学派」的政治和宗教团体。
最早把数的概念提到突出地位的是毕达哥拉斯学派。
他们很重视数学,企图用数来解释一切。
宣称数是宇宙万物的本原,研究数学的目的并不在于使用而是为了探索自然的奥秘。
他们从五个苹果、五个手指等事物中抽象出了五这个数。
这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。
在实用数学方面,它使得算术成为可能。
在哲学方面,这个发现促使人们相信数是构成实物世界的基础。
4、毕达哥拉斯定理——勾股定理
毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)著称于世。
这定理早已为巴比伦人所知(在中国古代大约是公元前2到1世纪成书的数学著作《周髀算经》中假托商高同周公的一段对话。
商高说:“…故折矩,勾广三,股修四,经隅五。
”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”。
这就是中国著名的勾股定理。
),不过最早的证明大概可归功于毕达哥拉斯。
他是用演绎法证明了直角三角形斜边平方等于两直角边平方之和,即毕达哥拉斯定理(勾股定理)。
5、欧几里得
欧几里得(公元前330年—公元前275年),古希腊数学家。
他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。
欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。
欧几里得(Euclid)是古希腊著名数学家、欧氏几何学开创者。
欧几里得出生于雅典,当时雅典就是古希腊文明的中心。
浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入柏拉图学园学习。
欧几里得在《几何原本》中还对完全数做了探究,
他通过 2^(n-1)·(2^n-1) 的表达式发现头四个完全数的。
当 n= 2: 2^1(2^2-1) = 6 当 n= 3: 2^2(2^3-1) = 28 当n= 5: 2^4(2^5-1) = 496 当 n= 7: 2^6(2^7-1) = 8128 一个偶数是完全数,当且仅当它具有如下形式:2^(n-1)(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。
其中2^(n)-1是素数,上面的6和28对应着n=2和3的情况。
我们只要找到了一个形如2^(n)-1 的素数(即梅森素数),也就知道了一个偶完全数。
在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。
欧拉、阿基米德、牛顿、高斯等四位被称为有史以来贡献最大的四位数学家。欧拉:欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。欧拉从小就特别喜欢数学,不满10岁就开始自学《代数学》。13岁上大学,两年后获得巴塞尔大学的学士学位,次年又获得巴塞尔大学的哲学硕士学位。1725年,欧拉来到彼得堡,开始了他的数学生涯.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.过度的工作使他得了眼病,右眼失明,时年28岁.1741年欧拉到柏林担任科学院物理数学所所长.1766年,重回彼得堡任职.没过多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年一场大火将他的书房和大量研究成果全部化为灰烬。沉重的打击,仍然没有使欧拉倒下.他以惊人的毅力,凭着记忆和心算进行研究,直到逝世.在失明后的17年间,他还口述了几本书和400篇左右的论文.当大火烧掉他几乎全部的著述之后,欧拉用了一年的时间口述了所有这些论文并作了修订.欧拉知识渊博,著作丰富,令人惊叹不已!他从19岁开始发表论文,直到76岁,一生写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他共写下了886本书籍和论文,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."著名数学家拉普拉斯(Laplace)曾说过:"读读欧拉、读读欧拉,它是我们大家的老师!“欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.阿基米德:伟大的古希腊哲学家、数学家、物理学家,静力学和流体静力学的奠基人。出生于西西里岛的叙拉古。从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。阿基米德的父亲是天文学家和数学家,所以他从小受家庭影响,十分喜爱数学。给我一个支点,我可以撬动地球阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图先验的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。阿基米德是数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就,特别是在几何学方面他的数学思想中蕴涵着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。据说罗马兵入城时,统帅马塞拉斯出于敬佩阿基米德的才能,曾下令不准伤害这位贤能。而阿基米德似乎并不知道城池已破,又重新沉迷于数学的深思之中。一个罗马士兵突然出现在他面前,命令他到马塞拉斯那里去,遭到阿基米德的严词拒绝,于是阿基米德不幸死在了这个士兵的刀剑之下。另一种说法是:罗马士兵闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形(还有一种说法他在沙滩上画图),士兵将图踩坏,阿基米德怒斥士兵:"不要弄坏我的圆!"士兵拔出短剑,这位旷世绝伦的大科学家,竟如此地在愚昧无知的罗马士兵手下丧生了。马塞拉斯对于阿基米德的死深感悲痛。他将杀死阿基米德的士兵当作杀人犯予以处决,并为阿基米德修了一座陵墓,在墓碑上根据阿基米德生前的遗愿,刻上了"圆柱容球"这一几何图形。牛顿:牛顿(IsaacNewton,1643~1727)伟大的物理学家、天文学家和数学家,经典力学体系的奠基人。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来,牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后爸所生的一子二女回到牛顿身边。牛顿自幼沉默寡言、性格倔强,这种习性可能来自他的家庭处境。大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常、成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。在1665~1666年,伦敦流行鼠疫的两年间,牛顿回到家乡。这两年牛顿才华横溢,作出了多项发明。1667年重返剑桥大学,1668年7月获硕士学位。1669年巴罗推荐26岁的牛顿继任卢卡斯讲座教授,1672年成为皇家学会会员,1703年成为皇家学会终身会长。1699年就任造币局局长,1701年他辞去剑桥大学工作,因改革币制有功,1705年被封为爵士。1727年牛顿逝世于肯辛顿,遗体葬于威斯敏斯特教堂。牛顿的伟大成就与他的刻苦和勤奋是分不开的。他的助手H牛顿说过,“他很少在两、三点前睡觉,有时一直工作到五、六点。春天和秋天经常五、六个星期住在实验室,直到完成实验。”他有一种长期坚持不懈集中精力透彻解决某一问题的习惯。他回答人们关于他洞察事物有何诀窍时说:“不断地沉思”。这正是他的主要特点。对此有许多故事流传:他年幼时,曾一面牵牛上山,一面看书,到家后才发觉手里只有一根绳;看书时定时煮鸡蛋结果将表和鸡蛋一齐煮在锅里;有一次,他请朋友到家中吃饭,自己却在实验室废寝忘食地工作,再三催促仍不出来,当朋友把一只鸡吃完,留下一堆骨头在盘中走了以后,牛顿才想起这事,可他看到盘中的骨头后又恍然大悟地说:“我还以为没有吃饭,原来我早已吃过了”。牛顿的成就,恩格斯在《英国状况十八世纪》中概括得最为完整:“牛顿由于发明了万有引力定律而创立了科学的天文学,由于进行了光的分解而创立了科学的光学,由于创立了二项式定理和无限理论而创立了科学的数学,由于认识了力的本性而创立了科学的力学”。高斯:德国著名数学家、物理学家、天文学家、大地测量学家。他有数学王子的美誉。高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。他曾说,他在麦仙翁堆上学会计算。能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋。高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。但是据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495++100899(公差198,项数100)的一个等差数列。当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。
世界著名的数学家
Weierstrass 魏尔斯特拉斯(古典分析学集大成者,德国人)
Cantor 康托尔 (Weiestrass的学生,集合论的鼻祖)
Bernoulli 伯努力 (这是一个17世纪的家族,专门产数学家物理学家)
Fatou 法都(实变函数中有一个Fatou引理,为北大实变必考的要点)
Green 格林(有很多姓绿的人,反正都很牛)
SLie 李 (创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)
Gauss 高斯(有些人不需要说明,Gauss就是一个)
Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他)
Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton 牛顿(名字带牛,实在是牛)
Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace 拉普拉斯(这人的东西太多了,到处都有)
Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)
Maxwell 麦克斯韦(电磁学中的Maxwell方程组)
Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether 诺特(最最伟大的女数学家,抽象代数之母)
Kepler 开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel 波莱尔(学过数学分析和实分析都知道此人)
Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan 拉曼奴阳(天资异禀,死于思乡病)
Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder 赫尔得(Holder不等式,L-p空间里的那个)
Poisson 泊松(概率中的Poisson过程,也是纯数学家)
Nikodym 发音很难的说(有著名的Ladon-Nikodym定理)
HHopf 霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者)
Baire 贝尔(著名的Baire纲)
Haar 哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)
Kronecker 克罗内克(牛人,迫害Cantor至疯人院)
ELaudau 朗道(巨富的数学家,解析数论超牛)
Markov 马尔可夫(Markov过程)
Wronski 朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo 策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche 儒契(在复变中有Rouche定理Rouche函数)
Taylor 泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个)
Urysohn 乌里松(在拓扑中有著名的Urysohn定理)
Frechet 发音巨难的说,泛函中的Frechet空间
Picard 皮卡(大小Picard定理,心高气敖,很没有人缘)
Schauder 肖德尔(泛函中有Schauder基Schauder不动点定理)
Lipschiz 李普西茨(Lipshciz条件,研究函数光滑性的)
Liouville 刘维尔(用Liouville定理证明代数基本定理应该是最快的方法)
Lindelof 林德洛夫(证明了圆周率是超越数,讲课奇差)
de Moivre 棣莫佛(复数的乘法又一个他的定理,很简单的那个)
Klein 克莱因(著名的爱尔兰根纲领,哥廷根的精神领袖)
Bessel 贝塞尔(Hilbert空间一个东西的范数用基表示有一个Bessel定理)
Euclid 欧几里德(我们的平面几何学的都是2000前他的书)
Kummer 库默尔(数论中最有影响的几个人之一)
Ascoli 阿斯克里(有Ascoli-Arzela定理,要一致有界等度连续的那个)
Chebyschev 切比雪夫(他证明了n和2n之间有一个素数)
Banach 巴拿赫(波兰的牛人,泛函分析之父)
Hilbert 希尔伯特(这个也没有介绍的必要)
Minkowski 闵可夫斯基 (Hilbert的挚友,Einstein的“恩师”)
Hamilton 哈密尔顿(第一个发现了4元数,在一座桥上)
Poincare 彭加莱(数学界的莎士比亚)
Peano 皮亚诺(有Peano公理,和数学归纳法有关系)
Zorn 佐恩(Zorn引理,看起来显然的东西都用这个证明)
1.国际著名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。
3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。
4.著名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。
5.我国泛函分析领域研究先驱者,曾远荣
1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓著。
6.我国最早提倡应用数学与计算数学的学者,赵访熊
1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。
7.著名数学家,数学教育家,吴大任
1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,著、译数学教材及名著多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大百科全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。
8.著名数学家,北大教授,庄圻泰
1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。著有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom·plexVariable》(在美国出版)
9.著名数学家,数学教育家,四川大学校长,柯召
1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。
10.中央研究院院士,首批学部委员,许宝騄
1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。
11.中科院院士,原北大数学系主任,段学复
1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了著名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。
12.我国拓扑学的奠基人 江泽涵
毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。
郭永怀是我国著名力学家、应用数学家、空气动力学家。他的科研方向横跨了核弹、导弹、人造卫星三个领域。当年,他也是美国不想轻易放走的尖端科技人才。
郭永怀,力学家、应用数学家1909年4月4日生于山东荣成。1935年毕业于北京大学物理系。1945年获美国加州理工学院博士学位。1957年被选聘为中国科学院学部委员(院士)。1968年12月5日因飞机失事不幸牺牲,被追认为烈士。曾任中国科学院力学研究所研究员、副所长,第二机械工业部第九研究院副院长等职。
我国近代力学事业的奠基人之一。在跨声速流和奇异摄动理论(PLK方法)方面的成就为国际公认。倡导了我国高速空气动力学、电磁流体力学和0力学等新兴学科的研究。担负国防科学研究的业务领导工作,为发展我国核弹与等事业作出了重要贡献。1999年被国家追授“两弹一星”功勋奖章。
郭永怀,中国近代力学事业奠基人之一。他1909年4月出生于山东荣成一个普通的农民家庭。1935年毕业于北京大学物理系。1940年8月,郭永怀漂洋过海,去加拿大多伦多大学学习应用数学。
在加拿大完成学业后,郭永怀来到美国学习,学成后到康奈尔大学执教。在此期间,他接连突破了航空和航空动力学领域的一系列世界性难题,声名鹊起。然而,学识,名誉,金钱和地位,都不能让他忘记自己的理想——回国效力。
答:很多数学家在数学领域的贡献是多方面的,根本没有一个准确的排行,如果一定要给出一个排行,那么会带有个人偏见。
艾伯菌我就以个人对数学 历史 的了解,给出一个大致的梯队排行,仅供参考:
第一梯队
欧拉、高斯、牛顿、黎曼
这四位都是神级梯队的数学家,随便哪一个的贡献都是极其重要的,而且他们的贡献不止于数学领域,在物理和其他领域也有着重要贡献。
比如莱布尼茨和牛顿都同时发明了微积分,但是莱布尼茨的名声就没有牛顿大,虽然莱布尼茨发明的微积分比牛顿的更实用,但论其影响力就比不上牛顿了。
而欧拉和高斯,在基础数学领域的贡献都是无与伦比的,而且两人不相上下,现在科学领域随处可见欧拉和高斯的贡献,比如欧拉方程、欧拉常数、高斯分布、高斯定律等等。
而黎曼在高等数学领域的贡献,给众多学科铺平了道路,比如黎曼几何,就给相对论提供了数学基础;而黎曼积分、黎曼流形、黎曼条件等等概念,在高等数学领域随处可见。
第二梯队
欧几里得、阿基米德、彭加莱、希尔伯特、莱布尼茨、陈省身、康托尔、伽罗瓦、柯西、笛卡尔、冯·诺依曼拉格朗日等等。
能排到第二梯队的数学家很多,他们其中一些对基础数学有着开创性贡献,比如欧几里得和阿基米德;另外一些在各自领域,有着极其重要的贡献,比如微分几何之父陈省身,群论的开创者伽罗瓦;其中也不乏全才式人物,比如彭加莱、冯·诺依曼、希尔伯特和莱布尼茨。
第二梯队的数学家,都至少在某个数学领域有着开创性贡献,很难在其中选出六位进行排序;但是像欧几里得、希尔伯特这样有着极其重要贡献的数学家,还是稳稳排在前十的。
另外,还有一些数学家,在数学的某个点上,有着非常杰出的贡献,也非常有名,比如:
(1)安德鲁·怀尔斯,费马大定理的证明者;
(2)艾米·诺特,最伟大女数学家,被誉为“现代数学之母”;
(3)图灵,人工智能之父,在计算机方面的贡献实在太重要了;
(4)哥德尔,哥德尔在现代逻辑学的成就非凡,数学上他是一座不朽里程碑;
……等等等等
这个问题的答案并非是唯一的,什么是伟大的数学家?在我看来,伟大的数学家应具有以下特征,一是对数学
求历史上最伟大的十二位数学家的资料!
本文2023-09-22 08:08:04发表“资讯”栏目。
本文链接:https://www.lezaizhuan.com/article/45676.html