比色法中吸光度A和光密度OD是什么关系啊

栏目:资讯发布:2023-11-08浏览:2收藏

比色法中吸光度A和光密度OD是什么关系啊,第1张

OD是optical

delnsity(光密度)的缩写,表示被检测物吸收掉的光密度,光通过被检测物,前后的能量差异即是被检测物吸收掉的能量,特定波长下,同一种被检测物的浓度与被吸收的能量成定量关系。  检测单位用OD值表示,

OD是optical

delnsity(光密度)的缩写,表示被检测物吸收掉的光密度,

OD=1og(1/trans),其中trans为检测物的透光值。

吸光度

吸光度用A表示。A是absorbance,是指光线通过溶液或某一物质前的入射光强度

与该光线通过溶液或物质后的透射光强度比值的对数,影响它的因素有溶剂、浓度、温度等等。吸光系数与入射光的波长以及被光通过的物质有关。只要光的波长被固定下来,同一种物质,吸光系数就不变。

当一束光通过一个吸光物质(通常为溶液)时,溶质吸收了光能,光的强度减弱。吸光度就是用来衡量光被吸收程度的一个物理量。A=abc,其中a为吸光系数,单位L/(g·cm),b为液层厚度(通常为比色皿的厚度),单位cm

c为溶液浓度,单位g/L

影响吸光度的因数是b和c。a是与溶质有关的一个常量。此外,温度通过影响c,而影响A。

全反射现象光从光密媒质射入光疏媒质时,折射角大于入射角.由此可以预料,当入射角增大到某一角度时,折射角将等于90°,入射角再增大,就不再有折射光线了.上述现象可以用图5-23所示的半圆形玻璃砖来观察.让光线沿着半圆形玻璃砖的半径射到直边上,可以看到,一部分光线从直边折射到空气中,一部分光线反射回玻璃.逐渐增大光线的入射角,将会看到,折射光线离法线越来越远,而且折射光线越来越弱,反射光线越来越强.当入射角增大到某一角度时,折射光线消失,只剩下反射光线,光全部反射回玻璃中.这种现象叫做全反射.

临界角折射角等于90°时的入射角叫做临界角.光线从光密媒质射入光疏媒质,当入射角大于临界角时,就发生全反射现象.

利用光的折射定律,可以求出各种媒质对空气(或真空)的临界角.如果用C表示临界角,n表示媒质的折射率,那么,由于空气对该媒质的折射率等于1/n ,所以

sinC/sin90°=1/n

由此可得sinC=1/n

因此,已知媒质的折射率,利用上式就可以求出这种媒质对空气(或真空)的临界角

OD260/A280和A260/A230是核酸纯度的指示值。

纯度好的DNA或RNA,在pH7-85 下OD260 / OD280的比值应该在20 或25。 纯净的样品比值大于18(DNA)或者20(RNA)。如果比值低于18 或者20,表示存在蛋白质或者酚类物质的影响。

OD230表示样品中存在一些污染物,如碳水化合物、盐(胍盐)等,较纯净的核酸A260/A230的比值大于20 。 

DNA纯度判断根据:DNA纯度的判断根据OD260/OD280的比值判断,符合要求纯度高的纯化DNA其OD260/OD280在16-18之间,低于此范围表明蛋白质含量超标,高于此范围表明样品中含有RNA。

光密度概念:OD是optical density(光密度)的缩写, OD=1og(1/trans),其中trans为检测物的透光值。吸光度(absorbance)是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,影响它的因素有溶剂、浓度、温度等。

吸光度概念:吸光度用A表示,A=abc,其中a为吸光系数,单位L/(g•cm),b为液层厚度(通常为比色皿的厚度),单位cm ,c为溶液浓度,单位g/L 影响吸光度的因数是b和c。a是与溶质有关的一个常量,温度通过影响c,而影响A。 一般来说OD260代表核酸的吸光度,OD280代表蛋白质的吸光度,OD230代表其他杂质(多糖等)的吸光度。

备注:A代表吸光值,而OD是光密度值,A260/A280与OD260/OD280的意思是一样的。

光的特点是沿直线传播的,但当它遇到一个反射平面的时候它就会反射,如果光线与反射面是垂直的,入射角和反射角都是90°的话,光线就会原路返回。

太阳光是由红、橙、黄、绿、青、靛、紫七种颜色构成的。

光同时具备以下四个重要特征:

1、在几何光学中,光以直线传播。笔直的“光柱”和太阳“光线”都说明了这一点。

2、在波动光学中,光以波的形式传播。光就像水面上的水波一样,不同波长的光呈现不同的颜色。

3、光速极快。在真空中为30×10⁸m/s,在空气中的速度要慢些。在折射率更大的介质中,譬如在水中或玻璃中,传播速度还要慢些。

4、在量子光学中,光的能量是量子化的,构成光的量子(基本微粒),我们称其为“光量子”,简称光子,因此能引起胶片感光乳剂等物质的化学变化。

扩展资料

正在发光的物体叫光源,“正在”这个条件必须具备,光源可以是天然的或人造的。物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线、X射线等不可见光)的物体。光源主要可以分为三类。

第一类是热效应产生的光。太阳光就是很好的例子,因为周围环境比太阳温度低,为了达到热平衡,太阳会一直以电磁波的形式释放能量,直到周围的温度和它一样。

第二类是原子跃迁发光。荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光。此外霓虹灯的原理也是一样。原子发光具有独自的特征谱线。科学家经常利用这个原理鉴别元素种类。

第三类是物质内部带电粒子加速运动时所产生的光。譬如,同步加速器工作时发出的同步辐射光,同时携带有强大的能量。另外,原子炉(核反应堆)发出的淡蓝色微光(切伦科夫辐射)也属于这种。

-光 (光波的二象性)

od值越大,浓度越高,说明微生物越多。

微生物OD值反映菌体生长状态的一个指标,表示被检测物吸收掉的光密度,通常400~700nm 都是微生物测定的范围,需要紫外分光光度计测最大吸收波长。

用得最多的就是505nm测菌丝菌体、560nm测酵母、600nm测细菌,用测OD方法画微生物生长曲线时,同一株菌的起始培养浓度可以准备多管,根据检测点的需要,如需检测10个点,就准备10管。

光密度的简介

光通过被检测物,前后的能量差异即是被检测物吸收掉的能量,特定波长下,同一种被检测物的浓度与被吸收的能量成定量关系。

光密度入射光强度与透射光强度之比值的常用对数值,专业书籍则这样解释“吸光度”,入射光和透射光的透过率之比值的常用对数值。

分析可见,两个概念其实是一致的,“光密度”就是“吸光度”,用“光密度”符合国家标准,检测单位用OD值表示, OD=lg(1/trans),其中trans为检测物的透光值。

严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的077微米到紫光的039微米之间。波长在077微米以上到1000微米左右的电磁波称为“红外线”。在039微米以下到004微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。

光具有波粒二象性,即既可把光看作是一种频率很高的电磁波(1012~1015赫兹),也可把光看成是一个粒子,即光量子,简称光子。

因斯坦的光量子理论: 爱因斯坦的光量子假说恢复了光的粒子性,使人们终于认清了光的波粒双重性格,而且在它的启发下,发现了德布罗意物质波,使人们认清了微观世界的波粒二象性,为后来量子力学的建立奠定了基础。

爱因斯坦大胆假设:光和原子电子一样也具有粒子性,光就是以光速C运动着的粒子流,他把这种粒子叫光量子。同普朗克的能量子一样,每个光量子的能量也是E=hν,根据相对论的质能关系式,每个光子的动量为p=E/c=h/λ

列别捷夫(ПНЛебедев l866—1911)的光压实验证实了光的动量和能量的关系式。

根据光量子假说,爱因斯坦顺利地推出普朗克公式,并且还提出了一个光电效应公式。

光量子假说成功地解释了光电效应。当紫外线这一类的波长较短的光线照射金属表面时,金属中便有电子逸出,这种现象被称为光电效应。它是由赫兹(HRHertz l857—1894)和勒纳德(PLenard l862—1947)发现的。光电效应的实验表明:微弱的紫光能从金属表面打出电子,而很强的红光却不能打出电子,就是说光电效应的产生只取决于光的频率而与光的强度无关。这个现象用光的波动说是解释不了的。因为光的波动说认为光是一种波,它的能量是连续的,和光波的振幅即强度有关,而和光的频率即颜色无关,如果微弱的紫光能从金属表面打出电子来,则很强的红光应更能打出电子来,而事实却与此相反。利用光量子假说可以圆满地解释光电效应。按照光量子假说,光是由光量子组成的,光的能量是不连续的,每个光量子的能量要达到一定数值才能克服电子的逸出功,从金属表面打出电子来。微弱的紫光虽然数目比较少,但是每个光量子的能量却足够大,所以能从金属表面打出电子来;很强的红光,光量子的数目虽然很多,但每个光量子的能量不够大,不足以克服电子的逸出功,所以不能打出电子来。

赫兹以自己的实验证实了电磁波的存在,宣告光的波动说的全胜,判处了光的微粒说的死刑,可是又是他发现的光电效应导致了微粒说的复活。

从当时的观点看来光量子假说同光的干涉事实矛盾,许多物理学家不赞成光量子假说,就连普朗克也抱怨说“太过分了”, 1907年他在写给爱因斯坦的信中说:“我为作用基光量子(光量子)所寻找的不是它在真空中的意义,而是它在吸收和发射地方的意义,并且我认为,真空中的过程已由麦克斯韦方程作了精确的描述”。直到1913年他还拒绝光量子假说。

美国物理学家米立肯(RAMillikan l868—1953)在电子和光电效应的研究方面做出了杰出的贡献。他曾花费十年时间去做光电效应实验。最初他不相信光量子理论,企图以实验来否定它,但实验的结果却同他最初的愿望相反。1915年他宣告,他的实验证实了爱因斯坦光电效应公式。他根据光量子理论给出了h值的测定,与普朗克辐射公式给出的h值符合得很好。1922—1923年间,康普敦(AHCompton l892—1962)研究了X射线经金属或石墨等物质散射后的光谱。根据古典电磁波理论,入射波长应与散射波长相等,而康普敦的实验却发现,除有波长不变的散射外,还有大于入射波长的散射存在,这种改变波长的散射称为康普敦效应。光的波动说无论如何也不能解释这种效应,而光量子假说却能成功地解释它。按照光量子理论,入射X射线是光子束,光子同散射体中的自由电子碰撞时,将把自己的一部分能量给了电子,由于散射后的光子能量减少了,从而使光子的频率减小,波长变大。因此,康普敦效应的发现,有力地证实了光量子假说。

爱因斯坦的光量子假说发展了普朗克所开创的量子理论。在普朗克的理论中,还是坚持电磁波在本质上是连续的,只是假定当它们与器壁振子发生能量交换时电磁能量才显示出量子性。爱因斯坦对旧理论不是采取改良的态度,而是要求弄清事物的本质彻底解决问题,他看出量子不是一个成功的数学公式,而是揭露光的本质的手段。他克服了普朗克量子假说的不彻底性,把量子性从辐射的机制引伸到光的本身上,认为光本身也是不连续的,光不仅在吸收和发射时是量子化的,而且光的传播本身也是量子化的。爱因斯坦的光量子假说恢复了光的粒子性,使人们终于认清了光的波粒双重性格,而且在它的启发下,发现了德布罗意物质波,使人们认清了微观世界的波粒二象性,为后来量子力学的建立奠定了基础。

但凡物理量分为两种,一种称作强度量,这种量的取值与物质的数量的多少无关,比如温度,密度等。另一种称为广度量,这种量的取值与物质的数量的多少有关,比如质量,热量。既然你提到光密度,这应该是个强度量,那就与面积的大小无关,但是需要注意的是,这是一个状态参数,其在不同的空间点可能具有不同的值,并且在不同的时刻也可能具有不同的值。另外,如果积分是在同一时刻的某个曲面,则是一个定积分,如果是在同一曲面的不同时刻,那就是一个二重积分啦。希望那个能帮到你。

比色法中吸光度A和光密度OD是什么关系啊

OD是opticaldelnsity(光密度)的缩写,表示被检测物吸收掉的光密度,光通过被检测物,前后的能量差异即是被检测物吸收掉的能量,特定波长...
点击下载
热门文章
    确认删除?
    回到顶部