什么是柯蒂氏器?

栏目:资讯发布:2023-10-13浏览:3收藏

什么是柯蒂氏器?,第1张

柯蒂氏器(organ of corti) 内耳中的耳蜗螺旋器。感音装置。柯蒂1851年发现。位于内、外螺旋沟之间的基底膜上,由支持细胞和毛细胞组成。声波通过外耳和中耳传人内耳,刺激毛细胞,使其兴奋而产生神经冲动,这种冲动经第Ⅷ对脑神经_位听神经传达到大脑的听觉中枢,产生听觉。

老年人身体的各项机能都在慢慢的退化,所以就会造成很多疾病的发生,大多数老年人都会出现听力下降的现象,别人说话声音特别大,老年人也听不太清楚,也就是我们常说的耳背,其实导致老年人听力下降的原因有很多,我们来看看老人耳朵听力下降是什么原因。

一般情况下,人老了之后,各器官的功能都会有所下降,包括视力,听力,记忆力等。所以说老人,在听力方面下降,这是一个正常的情况,但并不是人老了都会有,老年性听力下降这样的一个情况。一些老年人,80多岁,甚至90多岁,还耳不聋眼不花,这个也是有的。所以说你的问题答案是大多数的老人,人老之后听力会有所下降,但不是都有。

由于老年人全身组织趋于退化,因此内耳及听神经也发生退行性改变。人的听觉器官可分为外耳、中耳和内耳三个部分。内耳有个耳蜗,里面有听觉感受器,即柯蒂氏器。当人体衰老时,耳蜗基底膜的柯蒂氏器即发生萎缩;同时支配基底膜的耳蜗神经发生萎缩。此外,老年人中枢神经发生萎缩,也导致了老年性耳聋。

在年轻时就要保护好听力,年老时听力就会下降的慢些、程度轻些。保护听力并不难,峰力总结了以下几点:

1、作息规律,早睡不熬夜;

2、饮食清淡,避免重咸饮食;

3、压力适量,学会缓解压力;

4、多做运动,增强身体素质;

5、避免长时间处于高噪音环境,适时使用防噪声耳塞;

6、避免长时间佩戴大音量的音乐耳机,应减少佩戴耳机的时间与音量;

7、避免使用耳毒性药物;

8、防止/控制“三高”,高血糖,高血压,高血脂;

9、若有突发耳鸣或听力下降,尽快到医院治疗,避免拖延;

10、若有不可逆性听力损失,尽早选配助听器,以保护残余听力,保持良好的听敏感度;

11、开朗的心态与积极的态度很重要

大脑皮层有严密的形态结构和机能定位。从外观上看,大脑由左、右两个大致对称的半球构成。两个半球的外层就是大脑皮层。皮层由神经细胞胞体密集排列,其下部是由髓鞘化了的神经纤维所构成。人类大脑皮层的皱折形成了许多沟回和裂。按照这些沟和裂,可把大脑皮层分为额叶、顶叶、枕叶和颞叶。额叶与顶叶由中央沟分开,颞叶在外侧裂下面,与枕叶和顶叶相连接,但没有明确分开的沟。大脑两半球内侧环绕着的额上回、颞下回、枕颞回、楔回以及颞下沟、顶枕沟等部位,是从两半球的外侧卷折过来的。靠近这些回沟更接近于中心位置的扣带回、海马回等,则属于旧皮层,即皮层内边界的边缘叶部分;围绕着它们以外的部分均为新皮层。大脑两半球是分开的结构,唯有中间的胼胝体是两半球联结的部分。

大脑皮层不同的区域有不同的机能。按照上述的结构分布,大致相应地分为3类机能区:皮层感觉区、皮层运动区和皮层联合区。皮层感觉区又可分为躯体感觉区、视觉区、听觉区。

视觉区。皮层视觉区位于枕叶,是视觉的最高中枢。视觉神经从视网膜上行进入脑,通向低级中枢——外侧膝状体。在上行途中,双眼视神经的一部分投射于同侧外侧膝状体,另一部分交叉到对边外侧膝状体,最后投射到皮层枕叶。由于视交叉是不完全的交叉,因此视觉信息向脑内传递带有双侧性。

听觉区。皮层听觉区位于颞上回,是听觉的最高中枢听觉神经从听觉感受器——内耳柯蒂氏器上行进入听觉低级中枢——内侧膝状体,最后投射到皮层颞叶。由于听觉神经进入脑内后也呈不完全交叉,故而听觉信息向脑内传递也带有双侧性。

躯体感觉区。躯体感觉区位于顶叶中央沟后面的中央后回。这里主管着热、冷、触、痛、本体觉等所有来自躯体的感觉。躯体特定部位的感觉在躯体感觉区有一定的机能定位,其定位有如下特点:颈部以下躯体感觉有对侧性,即左(右)侧躯体信息投射在右(左)侧皮层;整个躯体感觉的机能定位呈倒立分布,即来自躯体上部的信息投射到躯体感觉区下部,来自躯体下部的信息投射到感觉区上部;皮层投射区域的大小,不以躯体器官的大小而定,而是以器官感觉的精细和复杂程度而定。如手和口部感觉精细,内涵丰富,在皮层上占有极大的投射区。

皮层运动区。皮层运动区位于中央沟前面的中央前回。这部位含有大量的锥体细胞,故又称锥体区。皮层运动区的机能定位与躯体感觉区相似,即头面部运动由本侧皮层支配,头部以下躯体运动由对侧皮层支配;皮层运动区的机构定位呈倒立分布,运动区上部支配躯体下部运动,运动区下部支配身体上部运动;同时,动作越精细,越复杂,在皮层的投射区越大。

皮层联合区。大脑皮层中具有起着联络、综合作用的结构和机能系统,称为皮层联合区。它是大脑皮层执行高级心理功能的部位。在种系进化的水平上越高,联合区在皮层上占的比例越大。在人类,除上述感觉区和运动区以外的区域,均为联合区,它占据整个皮层的一半位置。

联合区不直接同感觉过程和运动过程相联系,它的主要功能是整合来自各感觉通道的信息,对输入的信息进行分析、加工和储存。它支配、组织人的言语和思维,规划人的目的行为,调整意志活动,确保人的主动而有条理的行动。因此,它是整合、支配人的高级心理活动,进行复杂信息加工的神经结构。 大脑皮层是由6层神经细胞组成的。在进化中,它由下层到上层依次生成,从而这些不同层次结构的功能也不尽相同。在功能上,它们被分为3个级区:初级区、次级区和联络区。

初级区。初级区主要指皮层第4层(感觉性内导层)和第5层(运动性外导层)大锥体细胞密集的部位。它直接接受皮层下中枢的传入纤维和向皮层下部发出的纤维,与感觉器和效应器之间有着直接的功能定位关系。这些部位的神经细胞具有高度的特异性,分别从视、听、肌肉等外周感受器与枕叶、颞叶、中央后回和中央前回联系起来。这种联系是由定位和功能相同的神经细胞聚集在一起,形成垂直于皮层表面的柱状结构,从而区分出投射性的皮层视觉区、听觉区、躯体感觉区和运动区,实现着初级的感觉性和运动性信息传递。整个初级区属于较简单的“投射”皮层结构。

次级区。次级区主要占据着皮层结构比较复杂的第2、3层组织。这些部位由短纤维神经细胞所组成。它们大部分同外周感官没有直接联系。次级区的主要功能是对外周输入的信息进行初步加工,它们还接受来自脑深部传导的冲动。次级区是在种系演化晚期阶段和人类中发展的,其功能是对所接受信息进行分析与整合,在复杂的心理活动中起作用。次级区属于“投射—联络”皮层结构。

联络区。联络区是指位于皮层各感觉区之间和重叠部位。它所包含的皮层区域完全是由皮层的上层细胞所组成,与外周感官无直接联系。联络区在皮层上构成两大区域。其一分布于脑后部两侧枕叶、顶叶和颞叶之间的结合部位,是各感觉区的皮层重叠部分,下顶区是它的基本组成部位。人类下顶区十分发达,占据联络区的四分之一,实际上联络区是人类所特有的组织。其二位于皮层运动区前上方,它在人的行为的复杂程序序列中起作用。它同皮层所有其余部分均有联系。联络区对心理的高级功能,诸如词义、语法、逻辑、抽象数量系统,综合空间标志的整合,以及经验的保存起作用;它协调各感觉区之间的活动,进行皮层最复杂的整合功能,被称为“保存信息、接受加工”的联络区。

大脑皮质分层结构是长期进化的产物。三级区结构的发展在不同类动物中有不同的发展等级。例如,老鼠的大脑皮层只有初级区和次级区的初步分化,没有联络区;猿猴的皮层有了联络区。只有到了人类,大脑皮质的分层次结构才分化得十分清楚。人的大脑皮层初级区受到发达的次级区的排挤,已占据不大的部位,而顶—枕—颞重叠区和额叶皮层的联络区两部分,是最发达的系统。人脑的功能作用,不是由相对分开的区域所完成,整个皮层结构是协同整合的机能系统。

大脑皮质的躯体运动中枢位于:中央前回和中央旁小叶前部;躯体感觉中枢位于:中央后回和中央旁小叶后部,视觉中枢位于:枕叶枕极和矩状裂周围皮层;听觉的中枢位于:颞横回。

1、躯体运动中枢:把大脑皮层中其与运动出现有关的区域,在人和各种动物的脑中,此区域是通过刺激或切除的方法确定的。

2、躯体感觉中枢:能够感知各种感觉刺激的大脑皮层的区域,可通过刺激和切除法来决定其部位。属于躯体感觉的最高级中枢。

3、视觉中枢:视觉的最高中枢,视觉神经从视网膜上行进入脑,通向低级中枢-外侧膝状体。

4、听觉中枢:听觉的最高中枢,听觉神经从听觉感受器-内耳柯蒂氏器上行进入听觉低级中枢-内侧膝状体,最后投射到皮层颞叶。

扩展资料:

除躯体运动,躯体感觉,视觉和听觉之外,大脑皮层的大部,顶、枕和颞叶皮层的其他部分称为联合区,都接受多通道的感觉信息,汇通各个功能特异区的神经活动。

大脑皮层执行高级心理功能的部位。在种系进化的水平上越高,联合区在皮层上占的比例越大。在人类,除上述感觉区和运动区以外的区域,均为联合区,它占据整个皮层的一半位置。

联合区不直接同感觉过程和运动过程相联系,它的主要功能是整合来自各感觉通道的信息,对输入的信息进行分析、加工和储存。

-大脑皮层

据刺激的来源不同,我们可以把感觉分为外部感觉和内部感觉。外部感觉是由机体以外的客观刺激引起、反映外界事物个别属性的感觉。外部感觉包括视觉、听觉、嗅觉、味觉和肤觉。内部感觉是由机体内部的客观刺激引起、反映机体自身状态的感觉。内部感觉包括运动觉、平衡觉和机体觉。

一、外部感觉

1.视觉

以眼睛为感觉器官,辨别外界物体明暗、颜色等特性的感觉叫做视觉。

产生视觉的适宜刺激是可见光。光是具有一定频率和波长的电波。宇宙中存在各种电磁波,而其中只有一小部分才是可见光。产生视觉的适宜刺激是波长为380~780纳米的电磁波,即可见光。

接受光波刺激的感受器是眼睛视网膜上的感光细胞。视网膜上的感光细胞有两种:视锥细胞和视杆细胞。视锥细胞大多集中于视网膜的中央窝及其附近,大约有六百万个,能分辨颜色和物体的细节。视杆细胞主要分布在视网膜的边缘,大约有12亿个,主要感受物体的明暗,但不能分辨颜色和物体的细节。当适宜的光刺激透过眼睛到达视网膜,引起视网膜中的感光细胞产生神经冲动,神经冲动沿视神经传导到大脑皮质的视觉中枢时,视觉就产生了。

光波的基本特性表现在三个方面,即强度、波长、纯度。与物理属性相对应,人对光波的感知也有三种特性:明度、色调与饱和度。

与光的强度对应的视觉现象是明度。明度指由光线强弱决定的视觉经验,是对光源和物体表面的明暗程度的感觉。如果我们看到的光线来源于光源,那么明度决定于光源的强度。如果我们看到的是来源于物体表面反射的光线,那么明度决定于照明的光源的强度和物体表面的反射系数。

与光的波长对应的视觉现象是色调。色调指物体的不同色彩。不同波长的光作用于人眼引起不同的色调感觉,如700纳米的光波引起的色调感觉是红色,620纳米的光波引起的色调感觉是橙色,70纳米的光波引起的色调感觉是蓝色。

饱和度反映的是光的成分的纯度。例如,浅绿色、墨绿色等是饱和度较小的颜色,而鲜绿色是饱和度较大的颜色。

与光的时间特性对应的视觉现象是后像和闪光融合。视觉刺激对感受器的作用停止后,感觉现象并不消失,还能保留短暂的时间,这种现象叫后像。例如,注视亮着的电灯几秒钟后,闭上眼睛,眼前会出现一个亮着的灯的形象位于暗的背景上,这是正后像,后像的品质与刺激物相同;随后可能看到一个黑色的形象位于亮的背景上,这是负后像。彩色视觉常常有负后像。例如,注视一个红色正方形一分钟后,再看白墙,在白墙上将看到一个绿色的正方形。当断续的闪光达到一定的频率,人们不会觉得是闪光,会得到融合的感觉,这种现象叫闪光融合。例如,日光灯的光线其实是闪动的,每秒钟闪动100次,但我们看到的却不是闪动的,而是融合的光。

2.听觉

声波振动鼓膜产生的感觉就是听觉。引起听觉的适宜刺激是频率(发声物体每秒钟振动的次数)为16~20000赫兹的声波。低于16赫兹的振动是次声波,高于20000赫兹的振动是超声波,都是人耳不能接受的。接受声波刺激的感受器是内耳的柯蒂氏器官内的毛细胞。当声音刺激经过耳朵传达到内耳的柯蒂氏器官内的毛细胞时,引起毛细胞兴奋,毛细胞的兴奋沿听神经传达到脑的听觉中枢,这就产生了听觉。

听觉器官对声波的反映表现为音高、响度和音色。

音高指听起来声音的高低。音高主要决定于声音的频率。一般地,声波振动频率越大,听起来音调越高;反之,音调越低。通常成年男性说话的音调要低于成年女性的音调。言语声的音高一般在85~1100赫兹。音高还受声音的持续时间等因素的影响。声音刺激都至少要持续一定的时间(低频声音的持续的时间要比高频声音的持续时间要长),才能让人体验到音高。疾病、年龄等因素也会使人对音高的感觉产生影响。

响度指声音的强弱程度,主要由声波的振幅决定。振幅越大,声音的响度也就越大;振幅越小,响度越小。测量响度的单位是分贝。生活中,耳语声的响度是20分贝,普通谈话的响度是60分贝,繁忙的街道的响度是80分贝,响雷的响度是120分贝。长时间处于85分贝以上环境中的人会产生听力损失。

音色指声音的特色,由声波的波形决定。例如,即使胡琴和小提琴发出的音高、响度相同的声音,听起来还是两种不同的声音,这种差别就是音色的差别。由干声音具有各种不同的特色,我们才可能辨别不同的发声体。

3.嗅觉

某些物质的气体分子作用于鼻腔黏膜时产生的感觉叫做嗅觉。

引起嗅觉的适宜刺激是有气味的的挥发性物质,接受嗅觉刺激的感受器是鼻腔黏膜的嗅细胞。有气味的气体物质作用于嗅细胞,细胞产生兴奋,经嗅束传至嗅觉的皮层部位(位于颞叶区),因而产生嗅觉。

许多动物要借助嗅觉来寻找食物、躲避危险、寻求异性。人的嗅觉已退居较次要的地位。例如,德国牧羊犬的嗅觉比人类的嗅觉敏锐一百万倍。但即使这样,人的嗅觉仍为我们的生存提供重要的信息。例如,有毒的、腐烂的物质常伴有难闻的气味,这对于想食用它们的人来说是一种警告。人的嗅觉受多种因素的影响,如刺激物的作用时间、机体生理状态、空气的温度和湿度等。温度太高、太低,空气湿度太小,机体感冒等,都会降低嗅觉的敏感性。

研究表明,嗅觉刺激可以唤起人们的记忆和情绪。做词汇练习时闻着巧克力香味的学生,第二天回忆词汇时,再次提供巧克力香味比不提供回忆的词汇要多。芳香的气味可以使人心情好,增强自信,提高工作效率。

4.味觉

可溶性物质作用于味蕾产生的感觉叫做味觉。如果用干净的手帕将舌头擦干,然后将冰糖或盐块在舌头上摩擦,这时你感觉不到任何味道,甚至可以把奎宁撒在干舌头上,只要唾液不溶解它,就不会感觉到苦味。引起味觉的适宜刺激是可溶于水或液体的物质,接受味觉刺激的感受器是位于舌表面、咽后部和腭上的味蕾。

味蕾的再生能力很强,所以即使因吃热的事物烫伤了舌头,也不会对味觉有太大影响。但是,随着年龄的增长,味蕾的数量会逐渐减少,因此人的味觉敏感性会逐渐降低。吸烟、喝酒会加速味蕾的减少,因而会加速味觉敏感性的降低。基本的味觉有酸、甜、苦、咸四种,其他味觉都是由这四种味觉混合而来。舌尖对甜味最敏感,舌中对咸味最敏感,舌的两侧对酸味最敏感,舌后对苦味最敏感。食物的温度对味觉敏感性有影响。一般来说,食物的温度在20℃~30℃时,味觉敏感性。机体状态也会影响味觉敏感性。饥饿的人对甜、咸的较敏感,对酸、苦不太敏感。

巴特舒克(LindaBartoshuk,1993)研究发现,人类因味觉引起的情绪反应是固定的。把甜的或苦的食物放在新生儿的舌头上时,新生儿舌头和面部的反应与成人一致。没有舌头的人仍有味觉,味觉感受器在嘴的后部和顶部。如果舌头的一边失去味觉,我们不会注意到,因为舌头的另一边对味觉会非常敏感。大脑难以对味觉定位,虽然舌头中间的味蕾较少,但我们体验到的味觉来自整个舌头。某些有营养的物质不能引起味觉,如脂肪、蛋白质、淀粉及维生素。

5.肤觉

刺激作用于皮肤引起的各种各样的感觉叫做肤觉。

引起肤觉的匡宜刺激是物体机械的、温度的作用或伤害性刺激,接受肤觉刺激均感受器位于皮肤、口腔黏膜、鼻黏膜和眼角膜上(如皮肤内的游离神经末梢、触觉小体、触盘、环层小体、棱形末梢等),呈点状分布。

肤觉的基本形态包括触压觉、温度觉、痛觉。其他各种肤觉是由这几种基本形态构成的复合体。

由非均匀的压力在皮肤上引起的感觉叫做触压觉。触压觉包括触觉和压觉。当机械刺激作用于皮肤表面而未引起皮肤变形时产生的感觉是触觉;当机械刺激使皮肤表面变形但未达到疼痛时产生的感觉是压觉。相同的机械刺激在皮肤的不同部位引起的触压觉的敏感性是不同的,额头、眼皮、舌尖、指尖较敏感,手臂、腿次之,胸腹部、躯干的敏感性较低。

温度觉指皮肤对冷、温刺激的感觉。温度觉包括冷觉和温觉两种。冷觉和温觉的划分以生理零度为界限。生理零度指皮肤的温度,随温度的变化而变化。温度刺激高于生理零度,引起温觉;温度刺激低于生理零度,引起冷觉;温度刺激与生理零度相同,则不能引起冷觉和温觉。人体不同部位的生理零度不同,面部为33℃,舌下为37℃,前额为35℃。当温度刺激超过45℃时,会使人产生热甚至烫的感觉。这种感觉是温觉和痛觉的复合。

痛觉是对伤害有机体的刺激所产生的感觉。引起痛觉的刺激很多,包括机械的、物理的、化学的、温度的以及电的刺激。痛觉对有机体具有保护作用。天生无痛觉的人常常寿命不长,因为他们体会不到因机体受伤或不适而产生的痛觉,因而不会主动去为医治自己的身体而努力。不仅仅是皮肤,全身各处的损伤或不适都会产生痛觉。因此,痛觉既可以是外部感觉,也可以是内部感觉。痛觉常伴有生理变化和情绪反应。皮肤痛定位准确;肌肉、关节痛定位不准确;内脏痛定位不准且具有弥散的特点。影响痛觉的因素很多,我们可以通过药物、电刺激、按摩、催眠、放松训练、分散注意力等方法减轻痛觉。我国学者研究表明,人体皮肤对痛觉的敏感性一年中经历两次周期性的变化,春、秋两季比夏、冬两季要迟钝,其原因尚不明了。

二、内部感觉

1.运动觉

反映身体各部分运动和位置的感觉叫运动觉。引起运动觉的适宜刺激是身体运动和姿势的变化,接受运动觉刺激的感受器位于肌肉、韧带、关节等的神经末梢。凭借运动觉,我们可以行走、劳动,还可以进行各种体育活动,完成各种复杂的运动技能;凭借运动觉与触觉、压觉等的结合,我们可以认识物体的软硬、弹性、远近、大小、滑涩等特性。

2.平衡觉

反映头部位置和身体平衡状态的感觉叫平衡觉。引起平衡觉的适宜刺激是身体运动时速度和方向的变化,以及旋转、震颤等,接受平衡觉刺激的感受器位于内耳的前庭器官,即椭圆囊、球囊和三个半规管。平衡觉的作用在于调节机体运动、维持身体的平衡。平衡觉与视觉、机体觉有联系,当前庭器官受到刺激时,视野中的物体仿佛在移动,我们会产生眩晕、恶心、呕吐等。

3.机体觉

机体内部器官受到刺激时产生的感觉叫机体觉。引起机体觉的适宜刺激是机体内部器官的活动和变化,接受机体觉刺激的感受器分布于人体各脏器的内壁。机体觉在调节内部器官的活动中具有重要作用,它能及时地反映机体内部环境的变化、内部器官的工作状态。当人体的内部器官处于健康、正常的工作状态时,一般不会产生机体觉。机体觉的表现形式有饥、渴、气闷、恶心、窒息、便意、性、胀、痛等。

下面这八张令人惊异的人体,都是用扫描电子显微镜拍摄经过后期合成的,通过它们你可以更近地观察人体的内部情况。下面将从头部开始,穿过胸腔,一直到达腹腔,通过这次的自我发现之旅,让你切身体验到扫描电子显微镜的非凡魅力。在这个过程中,你甚至可以看到,卵子第一次与精子相遇时的情景。

1、红血球

从上看,它们很像肉桂色糖果,但事实上它们是人体里最普通的血细胞红血球。这些中间向内部凹陷的细胞的主要任务,是将氧气输送到我们的整个身体。

2、分叉的发丝

分叉的发丝,在显微镜下看起来就像一株枯草。当头发长到一定长度后,如果不及时修剪,就会引起头皮油脂代谢紊乱,而且容易出现头发分叉,影响头发的健康。

3、耳毛细胞

这是耳朵内部的毛细胞,利用彩色扫描电子显微镜对内耳耳蜗的柯蒂氏器(又称螺旋器,是人类的听觉感受器)的听觉毛细胞显微成像。这些细胞浸在一种被称为内淋巴液的液体中。当声音传入耳朵时,声波引起内淋巴液震动,内淋巴液又触动毛细胞。

4、舌头

是不是有点不敢想象,你的舌头上居然有这么多看起来像红珊瑚一样的毛苔,是不是有点神奇呢?但这就是你的舌头哦,它控制着你所有的味觉。味觉分为甜、酸、苦、咸四种,其他味觉像涩味、辣味等,都是由这四种融合而成的呢。

5、牙釉质

这是牙釉质釉柱的"栅栏结构",有没有感觉就像鸟类的羽毛和地毯一样呢?经常刷牙非常有必要哦,不然你的牙齿还真有可能长成一个布满细菌的“脏地毯”哦。

6、肺气泡

这张显示的就是人类肺部的内表面。图中的洞穴就是肺气泡,这里是血液交换气体的地方。不要抽烟哦,不然你的肺就会被熏的黑黑的。

7、卵子表面的精子

上我们能看到大量的精子正在争先恐后地给卵子受精,这可是我们每个人拿下的第一个“第一名”呢。

8、培育5~6天后的人类胚胎在子宫

人类胚胎干细胞来自受精卵形成5~6天后的胚胎,在体外条件下能形成不同的组织和器官。胚胎干细胞有无以伦比的“可塑性”,生命的循环也从此开始。

参考资料:

大脑皮层 (谈宝珍)

包被大脑半球沟和回外层的灰质,是调节机体机能的最高部位。哺乳动物出现了高度发达的大脑皮层,并随着神经系统的进化而进化。新发展起来的大脑皮层在调节机能上起着主要作用;而皮层下各级脑部及脊髓虽也有发展,但在机能上已从属于大脑皮层。高等动物一旦失去大脑皮层,就不能维持其正常的生命活动。人类的大脑皮层更产生了新的飞跃,有了抽象思维的能力,成为意识活动的物质基础。人类大脑皮层的神经细胞约有140亿个,面积约2200平方厘米,主要含有锥体形细胞、梭形细胞和星形细胞(颗粒细胞)及神经纤维。按细胞与纤维排列情况可分为多层,自皮层表面到髓质大致分为六层。皮层的神经元之间联系十分广泛和复杂,在皮层的不同部位,各层的厚薄、各种神经细胞的分布和纤维的疏密都有差异。根据皮层的不同特点和功能,可将皮层分为若干区。机体的各种功能在皮层具有定位关系,如运动区、感觉区等。但这仅是相对的,这些中枢也分散有类似的功能。如中央前回(四区)主要管理全身骨胳肌运动,称运动区,但中央前回也接受部分的感觉冲动。中央后回主管全身体躯感觉,但刺激该区也可产生少量运动。皮层除一些特定功能的中枢外,人类皮层大部分区域称联合区。临床实验证明,某一中枢的损伤,并不使人永久性完全丧失该中枢所管理的功能,经过适当的治疗和功能锻炼,常可由其他区域的代偿而使该功能得到一定程度的恢复。(杨纫姝)

揭示大脑皮层的感知机理 2003-10-31 11:10:43 科技日报

当动物萎靡不振,昏昏欲睡时,它们的大脑是否也处于混沌状态?以色列研究人员在研究了猫的大脑活动后提出,动物即使是闭着眼睛打盹,其大脑也许仍会下意识地产生视觉图像。研究人员称,如果人类也是如此的话,那么,人们喜欢看自己期望看到的东西的这种倾向,也许出自大脑中不断产生的虚幻感觉。

通常,眼睛在察觉到一个细小的斑点时,动物大脑皮层大约几毫米大的区域会兴奋起来,该区域中成千上万的神经细胞立即开始详细了解斑点的性质。垂直的斑点会导致某些神经细胞十分兴奋,而水平或斜向斑点会让另一些神经细胞十分兴奋。于是,不同的斑点在大脑皮层的兴奋区域产生了不同的高度兴奋图案,神经学家称这些大脑皮层图案为“定位图”。人们一直认为,动物合上双眼后,大脑皮层中将不会出现“定位图”,取而代之的是神经细胞的随机活动。

据10月30日英国《自然》杂志网络版报道,以色列魏茨曼科学院塔尔·肯奈特和他的同事通过一项高水平的实验惊奇地发现,猫在昏迷时,其大脑却似乎在系统地扫描内在的图像。实验中,研究人员将电压敏感染料涂在昏迷猫的大脑皮层,利用显微镜,研究人员观察到,染料颜色随着大脑皮层神经细胞电刺激的状态变化而改变,并记录下了猫在昏迷时大脑皮层中自然发生的神经活动。通过比较他们发现,猫昏迷时的神经活动同它在清醒时观察实际景色引起的大脑皮层神经活动类似。

研究人员强调,他们记录的神经活动不是梦,因为该现象发生在大脑初级视觉皮层,这里被认为是被动记录视觉刺激的区域,也就是说,记录的神经活动发生在大脑进行信息处理链的低级阶段,它正好是动物大脑对眼前情景的反映。美国加州大学研究人员达理奥·瑞格奇表示,目前占主导地位的是“自下而上”观点,该观点认为信息只能从眼睛流向大脑中更高的处理中心。肯奈特他们的发现对“自上而下”的感知机制理论是强有力的支持。

然而,研究人员表示,他们还不清楚大脑皮层内在图像的含义,它们也许是最值得注意的记忆、期望或物体的反映。但对人类而言,这种内在的图像甚至可能代表着我们大脑中对周围环境最理想的猜测,但睁开眼后,我们获得的感官刺激也许会随之更新大脑中的猜测。

大脑皮层与心理活动

大脑皮层的结构与功能

大脑皮层是物种进化的高级产物,在人类身上发展到最高阶段。随着种系的发展,皮层所占大脑组织的总量比例相应增大。人类大脑皮层有140亿神经细胞,主要由神经细胞胞体密集而成。扩展了的皮层面积远远超过颅骨所能容纳的程度,它于是变得在颅内皱折和卷绕起来,好像把一块海绵拥塞在一个头盔里。

大脑皮层面积的增大,无疑是与它的结构的严密化和功能的精细分化联系着的。皮层上神经细胞胞体的密集排列,承担着寻找外界信息的极其复杂的加工。在此,以记忆为例,人类记忆的机制之一,是在同类外界输入信息的重复作用下,众多的、不同的神经细胞群交替地和重复地参与到整合活动中。记忆的保持或遗忘取决于这些神经细胞群参与工作的数量和质量。如果一次输入所激活神经细胞群在下次被抑制或破坏,还有另外的细胞群参与来取代前者。这说明庞大的神经细胞群参与记忆活动,能保证记忆痕迹在长时记忆中保存。

那么,记忆或思维如何成为有意识的呢?对于意识来说,在脑的中央核心部分,有众多的、短而细的多支神经纤维的神经元,它们之间可进行相互之间往复的平行传导。这种工作方式在脑各级组织中的广泛传导,给脑内留下一种持续的状态,这种状态在进化中逐渐成为一种感觉,它以主观体验的方式进行着自我监督,这就是意识的前身或起源。当这种脑的状态与言语机制相结合,就形成了人类的语词意识。

在人类,言语活动是信息加工的独特载体。语词代表着被极大概括化了的外界事物的涵义。因此,言语刺激和言语思维能激活所涉及的最大神经细胞,在广泛的大脑皮层中进行整合。它涉及思维的分类与归类,记忆的存贮与提取,情绪与动机,皮上与皮下的相互交错联系,这一切导致人的思维加工可在语词意识的水平上进行,并在情绪中产生满意与否的意识体验。

以上描述作为举例说明,无论是记忆的形成,思维的加工或意识的产生,尽管其物质基础和形成机制还不能确切地予以解释,但无疑是与脑这一体积虽小但却是极其庞大和复杂的神经结构的发展联系着的。

大脑皮层的结构与功能

1大脑皮层的外观形态分布与功能分工

大脑皮层有严密的形态结构和机能定位。从外观上看,大脑由左、右两个大致对称的半球构成。两个半球的外层就是大脑皮层。皮层由神经细胞胞体密集排列,其下部是由髓鞘化了的神经纤维所构成。人类大脑皮层的皱折形成了许多沟回和裂。按照这些沟和裂,可把大脑皮层分为额叶、顶叶、枕叶和颞叶。额叶与顶叶由中央沟分开,颞叶在外侧裂下面,与枕叶和顶叶相连接,但没有明确分开的沟。

大脑两半球内侧环绕着的额上回、颞下回、枕颞回、楔回以及颞下沟、顶枕沟等部位,是从两半球的外侧卷折过来的。靠近这些回沟更接近于中心位置的扣带回、海马回等,则属于旧皮层,即皮层内边界的边缘叶部分;围绕着它们以外的部分均为新皮层。大脑两半球是分开的结构,唯有中间的胼胝体是两半球联结的部分。

大脑皮层不同的区域有不同的机能。按照上述的结构分布,大致相应地分为3类机能区:皮层感觉区、皮层运动区和皮层联合区。皮层感觉区又可分为躯体感觉区、视觉区、听觉区。

视觉区。皮层视觉区位于枕叶,是视觉的最高中枢。视觉神经从视网膜上行进入脑,通向低级中枢——外侧膝状体。在上行途中,双眼视神经的一部分投射于同侧外侧膝状体,另一部分交叉到对边外侧膝状体,最后投射到皮层枕叶。由于视交叉是不完全的交叉,因此视觉信息向脑内传递带有双侧性。

听觉区。皮层听觉区位于颞上回,是听觉的最高中枢听觉神经从听觉感受器——内耳柯蒂氏器上行进入听觉低级中枢——内侧膝状体,最后投射到皮层颞叶。由于听觉神经进入脑内后也呈不完全交叉,故而听觉信息向脑内传递也带有双侧性。

躯体感觉区。躯体感觉区位于顶叶中央沟后面的中央后回。这里主管着热、冷、触、痛、本体觉等所有来自躯体的感觉。躯体特定部位的感觉在躯体感觉区有一定的机能定位,其定位有如下特点:颈部以下躯体感觉有对侧性,即左(右)侧躯体信息投射在右(左)侧皮层;整个躯体感觉的机能定位呈倒立分布,即来自躯体上部的信息投射到躯体感觉区下部,来自躯体下部的信息投射到感觉区上部;皮层投射区域的大小,不以躯体器官的大小而定,而是以器官感觉的精细和复杂程度而定。如手和口部感觉精细,内涵丰富,在皮层上占有极大的投射区。

皮层运动区。皮层运动区位于中央沟前面的中央前回。这部位含有大量的锥体细胞,故又称锥体区。皮层运动区的机能定位与躯体感觉区相似,即头面部运动由本侧皮层支配,头部以下躯体运动由对侧皮层支配;皮层运动区的机构定位呈倒立分布,运动区上部支配躯体下部运动,运动区下部支配身体上部运动;同时,动作越精细,越复杂,在皮层的投射区越大。

皮层联合区。大脑皮层中具有起着联络、综合作用的结构和机能系统,称为皮层联合区。它是大脑皮层执行高级心理功能的部位。在种系进化的水平上越高,联合区在皮层上占的比例越大。在人类,除上述感觉区和运动区以外的区域,均为联合区,它占据整个皮层的一半位置。

联合区不直接同感觉过程和运动过程相联系,它的主要功能是整合来自各感觉通道的信息,对输入的信息进行分析、加工和储存。它支配、组织人的言语和思维,规划人的目的行为,调整意志活动,确保人的主动而有条理的行动。因此,它是整合、支配人的高级心理活动,进行复杂信息加工的神经结构。

2大脑皮层的三级区结构与功能

大脑皮层是由6层神经细胞组成的。在进化中,它由下层到上层依次生成,从而这些不同层次结构的功能也不尽相同。在功能上,它们被分为3个级区:初级区、次级区和联络区。

初级区。初级区主要指皮层第4层(感觉性内导层)和第5层(运动性外导层)大锥体细胞密集的部位。它直接接受皮层下中枢的传入纤维和向皮层下部发出的纤维,与感觉器和效应器之间有着直接的功能定位关系。这些部位的神经细胞具有高度的特异性,分别从视、听、肌肉等外周感受器与枕叶、颞叶、中央后回和中央前回联系起来。这种联系是由定位和功能相同的神经细胞聚集在一起,形成垂直于皮层表面的柱状结构,从而区分出投射性的皮层视觉区、听觉区、躯体感觉区和运动区,实现着初级的感觉性和运动性信息传递。整个初级区属于较简单的“投射”皮层结构。

次级区。次级区主要占据着皮层结构比较复杂的第2、3层组织。这些部位由短纤维神经细胞所组成。它们大部分同外周感官没有直接联系。次级区的主要功能是对外周输入的信息进行初步加工,它们还接受来自脑深部传导的冲动。次级区是在种系演化晚期阶段和人类中发展的,其功能是对所接受信息进行分析与整合,在复杂的心理活动中起作用。次级区属于“投射—联络”皮层结构。

联络区。联络区是指位于皮层各感觉区之间和重叠部位。它所包含的皮层区域完全是由皮层的上层细胞所组成,与外周感官无直接联系。联络区在皮层上构成两大区域。其一分布于脑后部两侧枕叶、顶叶和颞叶之间的结合部位,是各感觉区的皮层重叠部分,下顶区是它的基本组成部位。人类下顶区十分发达,占据联络区的四分之一,实际上联络区是人类所特有的组织。其二位于皮层运动区前上方,它在人的行为的复杂程序序列中起作用。它同皮层所有其余部分均有联系。联络区对心理的高级功能,诸如词义、语法、逻辑、抽象数量系统,综合空间标志的整合,以及经验的保存起作用;它协调各感觉区之间的活动,进行皮层最复杂的整合功能,被称为“保存信息、接受加工”的联络区。

大脑皮质分层结构是长期进化的产物。三级区结构的发展在不同类动物中有不同的发展等级。例如,老鼠的大脑皮层只有初级区和次级区的初步分化,没有联络区;猿猴的皮层有了联络区。只有到了人类,大脑皮质的分层次结构才分化得十分清楚。人的大脑皮层初级区受到发达的次级区的排挤,已占据不大的部位,而顶—枕—颞重叠区和额叶皮层的联络区两部分,是最发达的系统。人脑的功能作用,不是由相对分开的区域所完成,整个皮层结构是协同整合的机能系统。

3脑的3个基本机能联合系统

人的心理活动是复杂的机能系统,它们不由脑的局部部位所决定。正像从上述皮层三级区所看到的,每个区域和不同层次起着不同的作用。皮层下结构的功能也是如此。按照脑的功能分工,可划分为3个基本的机能联合系统,任何心理活动都必须有它们的参与:调节觉醒和紧张状态的联合系统;接受加工和保存信息的联合系统;调节和控制复杂活动的联合系统。通过这3个机能系统的工作,可看到人的心理从信息输入、整合到反应的大致图景。

调节觉醒、紧张状态机能系统。为了心理活动的正常进行,保持大脑皮层一定的觉醒状态和适宜的紧张度,具有决定性的意义。保证和调节皮层觉醒状态和紧张度的器官,不是位于皮层本身,而是位于皮层下部位和脑干的网状结构。这些部位与皮层有上、下行的调节联系通路。网状结构上行激活系统激活皮层紧张度。同时通过网状结构下行激活系统受到皮层的调节与控制。借助于这种机制,皮层所需用以进行信息加工的兴奋与抑制的整合能量,从皮层下网状组织得到补充。

激活网状结构下行纤维的皮层部位,首先从额叶开始,并通向丘脑和脑干。这一额叶—网状结构通路,不但输送外导信息,引起有机体的适应行为,更重要的是,额叶的高级功能——意图形成、计划制订、监督计划的执行等有意识活动,是靠额叶—网状结构通路的机能活动实现的。事实上,即将从以下阐述所能看到的,上额叶受损伤,人的能动的心理活动的整个系统,也就是人的高级智能活动,将受到严重的破坏。

接受加工、保存信息机能系统。接受加工和保存信息的机能系统是心理整合的最主要的系统。它涉及大脑皮层的枕—颞—顶叶3个感觉区的3个级区的整合功能。初级投射区的特异性感觉输入——分别为视觉、听觉和躯体感觉的,在次级区即已被整合加工,但仍具有投射性;最重要的是在第三级联络区的广大皮层进行的多方面整合。例如,认识周围地理环境的综合标志,不是由专门化的某一感觉系统所能完成,而是由顶—枕部联络区所整合的反应。因此,顶—枕部受损伤时,空间认知即发生障碍。从直观知觉向以内部图式和广泛概括为前提的抽象思维的过渡,也必须在联络区参与下才有可能。在顶—枕—颞部受损伤时,不能把输入的个别信息整合到统一的结构中去,从而对信息意义的理解发生困难。

颞叶是听觉的中枢。颞叶次级区受损伤导致语音不识症,即“感觉性失语症。”这是左侧颞叶次级区受损伤的基本特征。它影响到听觉记忆和思维,产生“听觉记忆性失语症”。但是在顶—枕—颞叶三级联络区受损时,失去的则是对语法结构的理解。例如对“鸟巢在树枝上”的句子,患者弄不懂“树、鸟、巢、枝”的关系。这时,言语失去工具效应,发生命名障碍,语义不能纳入一定意义的范畴,语义图式完全遭到破坏。左半球额下因或额—颞区(Broca区)受损伤,则失去言语表达动机,构思不能主动发生,导致表达思想成为不可能的“运动性失语症。”

额叶受损伤时,患者在任务面前表现茫然不解。意识不到任务提出的条件,从而不能形成任何意图与计划。病人冲动式地得出答案,不能把答案与任务条件作比较,意识不到自己的答案毫无意义。实际上,额叶与整个皮层,特别是在三级联络区,有广泛的联系,额叶损伤所破坏的是人的能动的心理活动的整个结构。

调节复杂活动机能系统。调节复杂活动的机能系统位于大脑皮层前部中央前回的额叶。中央前回额叶是大脑的执行器官。它由皮层初级区第5层大椎体细胞纤维外导,通向达到肌肉运动器官,引起活动反应。这条通路称为椎体通路(活动的实现还要经过另一条椎体外路来保证)。

人对外来信息不仅简单地予以反应,在加工和保存信息中,产生意图,制订计划、执行程序、监督和控制活动,这就是人类高级的有意识的活动。这些复杂的信息加工是在上述“接受加工、保存信息”的机能系统中进行的,是在额叶次级区和联络区借助言语机制形成的,这就不仅涉及额叶本身,而且在联络区通向整个皮层。由此可见,活动调节机能系统有两个方向的联系,一个是下行通过间脑调节网状激活系统,以形成行为的动力图式;另一个是额叶与皮层所有其他部位的广泛联系,以实现对由意识所支配的行为的调节。因此,额叶不仅对调节皮层紧张度与激活水平起着重要的作用,而且对人的高级思维和决策,对问题解决、实现意志行为等意识活动的调节和控制,在整个皮层联络区的整合加工参与下,起着决定的作用。

综上所述,人的心理是在大脑皮质的3个级区和脑的3个机能系统的协同活动中实现的。外界信息在皮层初级区向次级区、联络区传递,特别是在其中的高级区进行加工。信息的传递过程,第一机能系统保证皮层紧张度,第二机能系统进行分析与整合,第三机能系统保证有意识的、有目的的探索活动。这就是大脑皮层的概略的信息加工图景。

大脑两半球功能差异

看起来似乎是完全对称的大脑两半球,实际上在大小和重量上,尤其在功能上是差异的。这种大脑两半球功能不对称性称为“单侧化”。主要表现在左、右两半球在实现语言、逻辑、数学和空间认知、雕刻、音乐等方面功能的差异。单侧化的研究为人们认识脑的功能提供了新的知识和开辟了新的途径。

1单侧化的证据和实验研究

早在上个世纪,布罗卡发现大脑左半球额叶受损伤导致运动性失语症以来,大量研究已向人们揭示了左半球的语言功能。因此,对右利手者来说,左半球为言语优势半球。然而对有半球的功能,长期以来一直不很清楚。近年来研究发现,右半球也有着单侧优势的重要功能。右利手者在右半球受损伤时,他们的空间和形象认知方面产生障碍,尤其在空间定向和对复杂图形的知觉中,只能知觉局部细节而不能把握整体。有的患者不能识别人的面孔,有的患者不能确定地图坐标。这些不正常现象在右半球受损伤中常见。

但是,这种现象在左利手患者中有时并不十分清楚。有的左利手者,与右利手者正相反,他们的右半球为语言优势,左半球为空间知觉优势。但是,有许多左利手者的两半球功能全然没有单侧化现象。他们的两半球的功能是均衡的,任何一侧受损伤均可导致失语症,而且,未受损伤的半球能较好地补偿受损伤半球的语言功能。这种现象使人迷惑不解,增加了认识两半球功能差异性的难度。

单侧化的进一步研究是在本世纪60年代从“割裂脑”技术中进行的(R Spery,1960)。正常人的脑是作为一个整合的整体起作用的。两个半球各自获得的外界信息,均可立即通过脑中心的胼胝体内连接两半球的神经互相传送到对边半球。但是在患某癫痫发作的病人中,由于胼胝体连接桥的作用,使一边半球的神经发作引起对边半球放电,从而导致两个半球的普遍放电,加剧了癫痫发作。通过割裂脑手术——割断胼胝体在两个半球之间的连接侨,可有效地制止癫痫发作的严重情况。

2大脑两半球功能差异性

割裂脑的研究为证明大脑两半球功能之差异提供了许多证据,但仍不能认为已经十分清楚。已经明确知道的是,左半球支配着言语表达能力,数学运算以及连续的分析综合思维活动,并符合逻辑;右半球能理解简单的语言,如摸出一个螺母表明对“螺母”词作出了反应。但是右半球不能理解抽象的语言形式和进行抽象思维。从语言功能上说,对右利手者,左半球为优势半球,右半球为非优势半球。

许多研究也证明了右半球有着它的特殊功能。右半球支配着空间方位定向和图形认知。它比左半球更好地完成三度空间辨认和绘画立体图形,在按照图案构造立体模型上,比左半球显示更有效的形象构思和形象透视能力。由此推论右半球有着方位知觉、触摸觉、绘画、雕刻等艺术活动方面的优势。还有些研究者认为右半球比左半球更多地支配情绪和梦,从而把与情绪活动密切联系的艺术才能归结为右半球优势。这需要作更多的研究才能予以确定。

两个半球的专门化在个体发展中有一个明显的发展过程,而且它是随着个体掌握语言和言语能力完善化而显示。在儿童时期,左半球受损伤,右半球代偿语言功能将没有多大困难。然而,成年人左半球受损伤,随其受损程度,语言缺陷将是不可避免的和无可取代的。

本节阐述了大量的有关大脑皮层结构的机能定位问题。但必须具有这样一种认识,即有关机能定位的知识大多数来自脑损伤引起的功能缺陷。但确切的损伤定位在病人活着的时候很难十分确切地予以鉴定,同时一处损伤,有时与不同的功能缺陷联系着,而许多种心理功能又完全由某一脑区所掌管。因此模糊不清和模棱两可的情况时常出现,这些困难只能靠大量的神经外科手术资料的积累来加以分析。这个问题即使得到克服,也还有另外一个问题需要对之具有明确的认识,即脑是心理的器官,了解心理活动要依靠脑科学知识;但这只是真理的一半。对脑这一物质基础的依赖,首先需要对心理本身的一定认识。换句话说,不了解情绪的性质,就无从解释脑皮质、皮下多部位与情绪的关系;不了解思维和知觉的区别,也难以分辨皮层不同级区与它们之间的定位关系;刺激额叶一定部位可引起某些回忆,但在对记忆知道更多之前,对此不能作出任何解释。神经生理学和心理学的知识是互相作用和互相促进其研究进展的。

什么是柯蒂氏器?

柯蒂氏器(organ of corti) 内耳中的耳蜗螺旋器。感音装置。柯蒂1851年发现。位于内、外螺旋沟之间的基底膜上,由支持细胞和毛细胞组成...
点击下载
热门文章
    确认删除?
    回到顶部