一文带你认识30个重要的数据结构和算法

栏目:资讯发布:2023-09-27浏览:3收藏

一文带你认识30个重要的数据结构和算法,第1张

数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。

它们是做什么用的?

想象一下有一排剧院椅。每把椅子都分配了一个位置(从左到右),因此每个观众都会从他将要坐的椅子上分配一个号码。这是一个数组。将问题扩展到整个剧院(椅子的行和列),您将拥有一个二维数组(矩阵)。

特性

链表是线性数据结构,就像数组一样。链表和数组的主要区别在于链表的元素不存储在连续的内存位置。它由节点组成——实体存储当前元素的值和下一个元素的地址引用。这样,元素通过指针链接。

它们是做什么用的?

链表的一个相关应用是浏览器的上一页和下一页的实现。双链表是存储用户搜索显示的页面的完美数据结构。

特性

堆栈是一种抽象数据类型,它形式化了受限访问集合的概念。该限制遵循 LIFO(后进先出)规则。因此,添加到堆栈中的最后一个元素是您从中删除的第一个元素。

堆栈可以使用数组或链表来实现。

它们是做什么用的?

现实生活中最常见的例子是在食堂中将盘子叠放在一起。位于顶部的板首先被移除。放置在最底部的盘子是在堆栈中保留时间最长的盘子。

堆栈最有用的一种情况是您需要获取给定元素的相反顺序。只需将它们全部推入堆栈,然后弹出它们。

另一个有趣的应用是有效括号问题。给定一串括号,您可以使用堆栈检查它们是否匹配。

特性

队列是受限访问集合中的另一种数据类型,就像前面讨论的堆栈一样。主要区别在于队列是按照FIFO(先进先出)模型组织的:队列中第一个插入的元素是第一个被移除的元素。队列可以使用固定长度的数组、循环数组或链表来实现。

它们是做什么用的?

这种抽象数据类型 (ADT) 的最佳用途当然是模拟现实生活中的队列。例如,在呼叫中心应用程序中,队列用于保存等待从顾问那里获得帮助的客户——这些客户应该按照他们呼叫的顺序获得帮助。

一种特殊且非常重要的队列类型是优先级队列。元素根据与它们关联的“优先级”被引入队列:具有最高优先级的元素首先被引入队列。这个 ADT 在许多图算法(Dijkstra 算法、BFS、Prim 算法、霍夫曼编码 )中是必不可少的。它是使用堆实现的。

另一种特殊类型的队列是deque 队列(双关语它的发音是“deck”)。可以从队列的两端插入/删除元素。

特性

Maps (dictionaries)是包含键集合和值集合的抽象数据类型。每个键都有一个与之关联的值。

哈希表是一种特殊类型的映射。它使用散列函数生成一个散列码,放入一个桶或槽数组:键被散列,结果散列指示值的存储位置。

最常见的散列函数(在众多散列函数中)是模常数函数。例如,如果常量是 6,则键 x 的值是x%6。

理想情况下,散列函数会将每个键分配给一个唯一的桶,但他们的大多数设计都采用了不完善的函数,这可能会导致具有相同生成值的键之间发生冲突。这种碰撞总是以某种方式适应的。

它们是做什么用的?

Maps 最著名的应用是语言词典。语言中的每个词都为其指定了定义。它是使用有序映射实现的(其键按字母顺序排列)。

通讯录也是一张Map。每个名字都有一个分配给它的电话号码。

另一个有用的应用是值的标准化。假设我们要为一天中的每一分钟(24 小时 = 1440 分钟)分配一个从 0 到 1439 的索引。哈希函数将为h(x) = x小时60+x分钟。

特性

术语:

因为maps 是使用自平衡红黑树实现的(文章后面会解释),所以所有操作都在 O(log n) 内完成;所有哈希表操作都是常量。

图是表示一对两个集合的非线性数据结构:G={V, E},其中 V 是顶点(节点)的集合,而 E 是边(箭头)的集合。节点是由边互连的值 - 描述两个节点之间的依赖关系(有时与成本/距离相关联)的线。

图有两种主要类型:有向图和无向图。在无向图中,边(x, y)在两个方向上都可用:(x, y)和(y, x)。在有向图中,边(x, y)称为箭头,方向由其名称中顶点的顺序给出:箭头(x, y)与箭头(y, x) 不同。

它们是做什么用的?

特性

图论是一个广阔的领域,但我们将重点介绍一些最知名的概念:

一棵树是一个无向图,在连通性方面最小(如果我们消除一条边,图将不再连接)和在无环方面最大(如果我们添加一条边,图将不再是无环的)。所以任何无环连通无向图都是一棵树,但为了简单起见,我们将有根树称为树。

根是一个固定节点,它确定树中边的方向,所以这就是一切“开始”的地方。叶子是树的终端节点——这就是一切“结束”的地方。

一个顶点的孩子是它下面的事件顶点。一个顶点可以有多个子节点。一个顶点的父节点是它上面的事件顶点——它是唯一的。

它们是做什么用的?

我们在任何需要描绘层次结构的时候都使用树。我们自己的家谱树就是一个完美的例子。你最古老的祖先是树的根。最年轻的一代代表叶子的集合。

树也可以代表你工作的公司中的上下级关系。这样您就可以找出谁是您的上级以及您应该管理谁。

特性

二叉树是一种特殊类型的树:每个顶点最多可以有两个子节点。在严格二叉树中,除了叶子之外,每个节点都有两个孩子。具有 n 层的完整二叉树具有所有2ⁿ-1 个可能的节点。

二叉搜索树是一棵二叉树,其中节点的值属于一个完全有序的集合——任何任意选择的节点的值都大于左子树中的所有值,而小于右子树中的所有值。

它们是做什么用的?

BT 的一项重要应用是逻辑表达式的表示和评估。每个表达式都可以分解为变量/常量和运算符。这种表达式书写方法称为逆波兰表示法 (RPN)。这样,它们就可以形成一个二叉树,其中内部节点是运算符,叶子是变量/常量——它被称为抽象语法树(AST)。

BST 经常使用,因为它们可以快速搜索键属性。AVL 树、红黑树、有序集和映射是使用 BST 实现的。

特性

BST 有三种类型的 DFS 遍历:

所有这些类型的树都是自平衡二叉搜索树。不同之处在于它们以对数时间平衡高度的方式。

AVL 树在每次插入/删除后都是自平衡的,因为节点的左子树和右子树的高度之间的模块差异最大为 1。 AVL 以其发明者的名字命名:Adelson-Velsky 和 Landis。

在红黑树中,每个节点存储一个额外的代表颜色的位,用于确保每次插入/删除操作后的平衡。

在 Splay 树中,最近访问的节点可以快速再次访问,因此任何操作的摊销时间复杂度仍然是 O(log n)。

它们是做什么用的?

AVL 似乎是数据库理论中最好的数据结构。

RBT(红黑树) 用于组织可比较的数据片段,例如文本片段或数字。在 Java 8 版本中,HashMap 是使用 RBT 实现的。计算几何和函数式编程中的数据结构也是用 RBT 构建的。

在 Windows NT 中(在虚拟内存、网络和文件系统代码中),Splay 树用于缓存、内存分配器、垃圾收集器、数据压缩、绳索(替换用于长文本字符串的字符串)。

特性

最小堆是一棵二叉树,其中每个节点的值都大于或等于其父节点的值:val[par[x]]

这个,你给狗狗喂点葡萄糖吧,起码狗狗能够保持些体力

另外,有没有口服消炎药什么的,去药店买点人受伤吃的消炎药给狗狗吃,剂量小点。好像可以口服云南白药,一般云南白药有胶囊的,里面有个小的保险子,重病可以服用。最好不要用云南白药涂患处,不然那个伤口好像烂了样的,反而清洗麻烦

狗狗是不是伤到骨头了,还是说只有外伤?一般狗狗痛是不太愿意吃东西的,好像人一样啦,生病的时候总是不愿意吃东西的。

我家吉娃娃脚被电梯夹住也是伤的很重,人家让我用碘伏消毒的,你用碘伏试试,吃东西的时候多哄哄狗狗,把吃的弄成小小块的,一边摸狗狗一边喂它吃吧

当时我就是这样喂我家狗狗的。

我也不知道你家狗狗的伤口有多大,如果不是很大的话,可能不需要包扎的,一般狗狗会自己舔,有时候狗狗自己舔比较容易愈合伤口。

平时你多摸摸狗狗,多安慰下它。

一文带你认识30个重要的数据结构和算法

数组是最简单也是最常见的数据结构。它们的特点是可以通过索引(位置)轻松访问元素。 它们是做什么用的? 想象一下有一排...
点击下载
热门文章
    确认删除?
    回到顶部