高一生物学遗传知识点整理
遗传学在高一生物教学中具有非常重要的地位,下面是我给大家带来的高一生物学遗传知识点整理,希望对你有帮助。
高一生物学遗传知识点11、单体:缺失掉一条染色体的个体。表示为:2n-1。
2、“Turner氏综合症”(性腺发育不全):性X染色体单体,45,X0。
3、三体:指二倍体的染色体组中多一条染色体的个体。表示为:2n+1。
4、先天愚型(Down氏综合征)21三体型:这是一种最常见的常染色体疾病,核型为47,+21,患儿的核型中比二倍体(46)多了一条第21号染色体
5、影印培养法:细菌和病毒遗传研究的常用方法。把长有许多菌落的母培养皿倒置于包有灭菌丝绒布的圆木柱上,然后把这一“印章”上的细菌一次接种到一系列选择培养基平板上。经培养后,就可选出适当的突变型。
6、原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整合到宿主细菌染色体中。处于整合状态的噬菌体DNA称为~~。
7、溶原性细菌:含有原噬菌体的细胞,也称溶原体。
8、转化(transformation):指细菌细胞(或其他生物)将周围的供体DNA,摄入到体内,并整合到自己染色体组的过程。
9、感受态(competence):细菌吸收外源DNA时的生理状态。
10、接合(coniugation):指遗传物质从供体—“雄性”转移到受体—“雌性”的过程。
11、性导(sexduction):细菌细胞在接合时,携带的外源DNA整合到细菌染色体上的过程。
12、F’因子(Fprimefactor):整合到染色体上F因子,在切除中分离出携带部分染色体片段,这种带有染色体基因的附加体称为F’。
13、转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。
14、普遍性转导:能够转导细菌染色体上的任何基因。
15、转导体:具有重组遗传结构的细菌细胞。
16、共转导(并发转导)(cotransduction):两个基因一起被转导的现象称。
17、流产转导:转导DNA分子进入受体细胞后,既不与受体基因组发生交换,又不随细胞DNA复制而复制,而是很稳定地存在于细胞之中现象。
18、局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或限制性转导。以λ噬菌体的转导,可被转导的只是λ噬菌体在细菌染色体上插入位点两侧的基因。
19、F+菌株:带有F因子的菌株作供体,提供遗传物质。
20、F-菌株:不带有F因子的菌株,只能作为受体,接受遗传物质。
高一生物学遗传知识点21、Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌染色体上。
2、F’菌株:带有F’因子的菌株,既可转移供体的染色体片段又可转移F因子。
3、正超螺旋:两股以右旋方向缠绕的螺旋,在外力往紧缠的方向捻转时,会产生一个左旋的超螺旋,以解除外力捻转造成的胁变。这样形成的螺旋为正超螺旋。
4、负超螺旋:两股以右旋方向缠绕的螺旋在外力向松缠的方向捻转时,产生一个右旋的超螺旋以解除外力捻转造成的胁迫。这样形成的超螺旋为负超螺旋。
5、复制子(replicon):在每条染色体上两个相邻复制终点之间的一段DNA叫做复制子。
6、遗传密码:决定蛋白质中氨基酸顺序的核苷酸顺序,特定的氨基酸是由1个或一个以上的三联体密码所决定的。
7、简并(degeneracy):一个氨基酸由一个以上的三联体密码所决定的现象。
8、中心法则(centraldogma):遗传信息从DNA→mRNA→蛋白质的转录和翻译的过程,以及遗传信息从DNA→DNA的复制过程。
9、转录:以DNA为模板形成mRNA的过程。
10、转译:以mRNA为模板合成蛋白质的过程。
11、基因突变(genemutation):指染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对应关系。
12、正向突变(forwardmutation):野生型基因经过突变成为突变型基因的过程。
13、回复突变(backmutation):突变型基因通过突变而成为原来野生型基因。
14、复等位基因(multiplealleles):由同一基因位点经多方向突变产生的三个或三个以上的基因称为复等位基因。一个基因座位内不同位点改变形成许多等位基因,即复等位基因。复等位基因是基因内部不同碱基改变的结果。
15、自交不亲和性(selfincompatibity):自花授粉不能受精(结实)或相同基因型异花授粉时不能受精的现象。
16、致死突变(1ethalmutation):能使生物体死亡的突变称为致死突变。
17、外显率(penetrance):在具有特定基因型的一群个体中,表现该基因所决定性状的个体所占比率。
18、表现度(expressivity):特定基因决定的性状,该性状表现的程度称为表现度。
19、转换(Transition):同型碱基的置换,一个嘌呤被另一个嘌呤替换;一个嘧啶被另一个嘧啶置换。
生物遗传方式分为:细胞质遗传和细胞核遗传。
细胞核遗传又分为:常染色体遗传和性染色体遗传。
细胞核遗传按表现形式分为:共显性、完全显性、不完全显性三种。
遗传病的遗传分为:单基因遗传和多基因遗传。
根据已知条件:3是携带FA基因的,而3没有表现出患病,说明,FA一定为隐性,同时,也不可能为X隐性遗传,若为X隐性遗传,3就为XbY,这就表现为患病状态,与已知矛盾。因此,3的基因型为:Bb,FA为常染色体隐性遗传。
牛津大学大数据研究所的研究人员在 探索 人类之间的遗传关系方面迈出了重要的一步:一个追踪我们所有祖先的家谱。这项研究发表在今天的《科学》杂志上。
在过去的二十年中,人类基因研究取得了非凡的进步,为数十万人产生了基因组数据,其中包括来自数千名史前人类的基因组数据。这就为追踪人类遗传多样性的起源,以生成世界各地个体如何相互关联的完整地图的可能性提供了依据。 到目前为止,这一愿景面临的主要挑战是找到一种方法来组合来自许多不同数据库的基因组序列,并开发算法来处理这种规模的数据。
然而,牛津大学大数据研究所的研究人员今天发表的一种新方法可以轻松组合来自多个来源的数据,并进行扩展以适应数百万个基因组序列。 大数据研究所的进化遗传学家、主要作者之一Yyan Wong博士解释说:"我们基本上已经建立了一个巨大的家谱,一个全人类的家谱,它尽可能地模拟了产生我们今天在人类中发现的所有遗传变异的 历史 。这个家谱使我们能够看到每个人的基因序列如何与其它基因组相关联。 由于单个基因组区域仅从父母一方(母亲或父亲)遗传,因此基因组上每个点的祖先都可以被认为是一棵树。这组树被称为"树序列"或"祖先重组图",将遗传区域与遗传变异首次出现的祖先联系起来。
主要作者Anthony Wilder Wohns博士在大数据研究所攻读博士学位,现在是麻省理工学院布罗德研究所和哈佛大学的博士后研究员,他说:"从本质上讲,我们正在重建我们祖先的基因组,并利用它们形成了一个庞大的关系网络。然后,我们可以估计这些祖先居住的时间和地点。我们方法的强大之处在于,它对基础数据做出的假设很少,还可以包括现代和古代的DNA样本。
该研究整合了来自八个不同数据库的现代和古代人类基因组数据,共包括来自215个人群的3609个个体基因组序列。古代基因组包括在世界各地发现的样本,年龄从1000多岁到10万多岁不等。这些算法预测了进化树中必须存在共同祖先的位置,以解释遗传变异的模式。由此产生的网络包含近2700万祖先。 在这些样本基因组上添加位置数据后,作者使用该网络来估计预测共同祖先居住的位置。结果成功地重新捕捉了人类进化史上的关键事件,包括从非洲迁出。
虽然家谱图已经是一个非常丰富的资源,但研究小组计划通过继续整合遗传数据来使其更加全面。由于树序列以高效的方式存储数据,因此数据集可以轻松容纳数百万个额外的基因组。 Wong博士说:"这项研究正在为下一代DNA测序奠定基础。随着来自现代和古代DNA样本的基因组序列质量的提高,这些树木将变得更加准确,我们最终将能够生成一个单一的,统一的地图,解释我们今天看到的所有人类遗传变异的下降。 Wohns博士补充说:"虽然人类是这项研究的重点,但这种方法对大多数生物都是有效的。
《遗传规律》专题复习
一、几种常见题型
(一)、显隐性的判断
①具有相对性状的纯合体亲本杂交,子一代杂合体显现的亲本的性状为显性性状。
②据“杂合体自交后代出现性状分离”。新出现的性状为隐性性状。
③具有相同性状的亲本杂交,子一代出现3:1分离比,占3/4的个体的性状为显性性状
④在未知显/隐性关系的情况下,任何亲子代表现型相同的杂交都无法判断显/隐性。
1.回答下面的(1)~(2)题。
(1)下表是豌豆五种杂交组合的实验统计数据:
亲本组合 后代的表现型及其株数
组别 表现型 高茎红花 高茎白花 矮茎红花 矮茎白花
甲 高茎红花×矮茎红花 627 203 617 212
乙 高茎红花×高茎白花 724 750 243 262
丙 高茎红花×矮茎红花 953 317 0 0
丁 高茎红花×矮茎白花 1251 0 1303 0
戊 高茎白花×矮茎红花 517 523 499 507
据上表回答:
①上述两对相对性状中,显性性状为 、 。
②写出每一杂交组合中两个亲本植株的基因型,以A和a分别表示株高的显、隐性基因,B和b分别表示花色的戏那、隐性基因。
甲组合为 × 。 乙组合为 × 。
丙组合为 × 。 丁组合为 × 。
戊组合为 × 。
③为最容易获得双隐性个体,应采取的杂交组合是 。
2.纯种甜玉米和纯种非甜玉米间行种植,收获时发现甜玉米果穗上有非甜玉米籽粒,而非甜玉米果穗上却无甜玉米籽粒。原因是 ( )
A.甜是显性性状 B.非甜是显性性状 C.相互混杂 D.相互选择
(提示:①通常情况下玉米是雌雄同株植物 ②间行种植的玉米能够同株异花传粉也可异株异花传粉)
3.下表为3个不同小麦杂交组合及其子代的表现型和植株数目。
组合
序号 杂交组合类型 子代的表现型和植株数目
抗病
红种皮 抗病
白种皮 感病
红种皮 感病
白种皮
一 抗病、红种皮×感病、红种皮 416 138 410 135
二 抗病、红种皮×感病、白种皮 180 184 178 182
三 感病、红种皮×感病、白种皮 140 136 420 414
据表分析,下列推断错误的是( )
A.6个亲本都是杂合体 B.抗病对感病为显性
C.红种皮对白种皮为显性 D.这两对性状自由组合
4.已知牛的有角和无角为一对相对性状,由常染色体上的等位基因A和a控制。在自由放养多年的牛群中,无角的基因频率与有角的基因频率相等,随机选1头无角公牛和6头有角母牛,分别交配每头
母牛只产一头小牛,在6头小牛中,3头有角,3头无角。
1)根据上述结果能否确定这对相对性状中的显性性状?请简要说明推理过程。
2)为了确定有无角这对相对性状的显隐性关系,用上述自由放养的牛群(假设无突变发生)为实验材料,再进行新的杂交实验,应该怎样进行?(简要写出杂交组合,预期结果并得出结论)
(二)、基因型的判断
基本方法:从隐性性状入手,以配子为中心,根据比例关系
1.隐性纯合突破法:具隐性性状的个体一定是纯合体,其基因型中的两个隐性基因分别来自两个亲本,说明两个亲本至少含一个隐性基因。
2.性状分离比突破法:根据特殊交配组合后代的性状分离比来确定基因型。
交配类型 亲本基因型 F1性状分离
杂合体自交 Bb×Bb 3∶1
测交 Bb×bb 1∶1
纯合亲本杂交 BB×bb 1∶0
1.下图为白化病(A-a)和色盲(B-b)两种遗传病的家族系谱图。请回答:
(1)写出下列个体可能的基因型。
Ⅰ2 ,Ⅲ9 ,Ⅲ11 。
(2)写出Ⅲ10产生的卵细胞可能的基因型为 。
(3)若Ⅲ8与Ⅲ11结婚,生育一个患白化病孩子的概率为 ,生育一个患白化病但色觉正常孩子的概率为 。
(4)若Ⅲ7与Ⅲ10结婚,生育一个患白化病孩子的概率为 ,生育一个患白化病但色觉正常孩子的概率为 。
(5)Ⅲ8与Ⅲ11以及Ⅲ7与Ⅲ10之间结婚,均属 婚配,他们之间的亲缘关系是 _________ _血亲。
(6)目前已发现的人类遗传病有数千种,遗传病产生的根本原因是 。
(05全国理综卷Ⅱ)2.已知果蝇中,灰身与黑身为一对相对性状(显性基因用B表示,隐性基因用b表示);直毛与分叉毛为一对相对性状(显性基因用F表示,隐性基因用f表示)。两只亲代果蝇杂交得到以下子代类型和比例:
灰身、直毛 灰身、分叉毛 黑身、直毛 黑身、分叉毛
雌蝇 3/4 0 1/4 0
雄蝇 3/8 3/8 1/8 1/8
请回答:
(总提示:解决涉及多对基因的遗传试题时可用“拆分组合法”:即首先分析其中一对基因的遗传情况,然后再将两对基因或多对基因的遗传情况组合起来分析,准确又省时。“拆分组合法”对同时含有细胞质遗传、常染色体遗传、伴性遗传试题解法也适应。
(1)控制灰身与黑身的基因位于 ;控制直毛与分叉毛的基因位于 。
(提示分析:①杂交后代中灰身:黑身=3:1,且雌雄比例相当,体现了与性别无关联的现象,即可断定控制灰身与黑身的基因在哪一类染色体上了; ②杂交后代的雄性个体中直毛:分叉毛=1:1,,而雌性个体全为直毛,由此可见直毛与分叉毛这一对相对性状的遗传体现了与性别相关联的现象)
(2)亲代果蝇的表现型为 、 。
(3)亲代果蝇的基因型为 、 。
(4)子代表现型为灰身直毛的雌蝇中,纯合体与杂合体的比例为 。
(5)子代雄蝇中,灰身分叉毛的基因型是 、 ;黑身直毛的基因型是 。
(三)、单基因遗传方式类型的判断
判断方法:
总提示:①先判断显隐性:无中生有为隐性,有中生无为显性
② 再假设基因位于X染色体上,进行推导验证。(从患者入手分析推导)
1.右图所示的某家族系谱中,有关遗传病最可能的遗传方式是 ( )
A.常染色体显性遗传
B.常染色体隐性遗传
C.X染色体隐性遗传
D.X染色体显性遗传
2.右图为与白化病有关的某家族遗传系谱图,致病基因用a表示,据图分析回答问题:
(1)该遗传病是受 (填“常染色体”或“X染色体”)上的隐性基因控制的。
(2)图中I2的基因型是 ,Ⅱ4的基因型为 。
(3)图中Ⅱ3的基因型为 ,Ⅱ3为纯合子的几率是 。
(4)若Ⅱ3与一个杂合女性婚配,所生儿子为白化病人,则第二个孩子为白化病女孩的几率是 。
3.在寻找人类缺陷基因时,常常需要得到有患病史的某些近亲结婚家系的系谱进行功能基因定位。科学家在一个海岛的居民中,找到了引起蓝色盲的基因。该岛约有44%的居民为蓝色盲基因的携带者。在世界范围内,则是每10000人中有一名蓝色盲患者。下图为该岛某家族系谱图,请分析回答下列总是:
(1)该缺陷基因是________(显或隐)性基因,在________染色体上。
(2)若个体Ⅲ—8患蓝色盲的同时又患血友病,当Ⅲ—8形成配子时,在相关的基因传递中遵循了什么遗传规律?
(3)若个体Ⅳ—14与该岛某表现型正常的男性结婚,预测他们后代患蓝色盲的几率是_____;若个体Ⅳ—14与岛外其他地方的某表现正常的男性结婚,预测他们后代患蓝色盲的几率是_____。
(4)现需要从第Ⅳ代个体中取样(血液、皮肤细胞、毛发等)获得该缺陷基因,请选取出提供样本的较合适个体,并解析选与不选的原因。
本页试题部分参考答案:(如觉得答案有疑问,请及时问老师)
(一)、显隐性的判断
1.(1)①高茎 红花 ②AaBb×aaBb AaBb×Aabb AABb×aaBb AaBB×aabb Aabb×aaBb ③戊
2.B 3.B
4.(1)不能确定答案见一轮《高考教练>>
(二)、基因的判断
1.(1)AaXbY,aaXbXb,AAXBY或AaXBY (2)AXB、AXb、aXB、aXb
(3)1/3,7/24 (4)1/6,1/24 (5)近亲,三代以内的旁系血亲
(6)遗传物质的改变(或基因突变和染色体变异)
2.(1)常染色体 X染色体 (2)雌:灰身直毛 雄:灰身直毛
(3)BbXFXf BbXFY (4)1∶5 (5)BBXfY BbXfY bbXFY
(三)、遗传类型的判断
2.(1)常染色体 (2)Aa aa (3)AA或Aa 1/3 (4)1/8
3.(1)隐 常 (2)基因的分离规律和基因的自由组合规律 (3)11% 1/400
(4)提供样本的合适个体为Ⅳ—14或Ⅳ—15,因为Ⅳ—14或Ⅳ—15是杂合体,肯定含有该缺陷基因。Ⅳ—16、Ⅳ—17、Ⅳ—18可能是杂合体,也可能是显性纯合体,不一定含有该缺陷基因
(四)、遗传概率的求算
Ⅰ.双亲都只有一种基因型
1、让杂种豌豆连续自交n代后,显性纯合体所占的比例为 ( )
A.(1/2)n B.(1/2)n+1 C.1-(1/2)n D.1/2-(1/2)n+1
2.基因型为Dd的个体连续自交n代,下图中的哪一条曲线能正确地反映纯合体所占比例的变化
Ⅱ.父母双方中有一方或双方含有多种基因型
3.右图为某遗传系谱图,若Ⅱ4与有病女性结婚,则生育有病男孩的概率为 ( )
A.1/4 B.1/3 C.1/8 D.1/6
4.大约在70个表型正常的人中有一个白化基因杂合子。一个表型正常,其双亲也正常,但有一个白化病弟弟的女人,与一个无亲缘关系的正常男人婚配。问他们所生的孩子患白化病的概率是 ( )
A.1/4 B.1/9 C.1/420 D.1/560
Ⅲ.多对相对性状
①加法定律:当一个事件出现时,另一个事件就被排除,这样的两个事件互为可斥事件,它们出现的概率为各自概率之和。
②乘法定律:当一个事件的发生不影响另一个事件的发生时,这样的两个事件同时或相继发生的概率是他们各自概率的乘积。
5、具有两对相对性状的纯合体杂交,在F2中能稳定遗传的个体数占总数的( )
A、1/16 B、1/8 C、1/2 D、1/4
6、具有两对相对性状的两个纯合亲本杂交(AABB和aabb), F1自交产生的F2中,新的性状组合个体数占总数的 ( )
A、10/16 B、6/16 C、9/16 D、3/16
7、基因型分别为DdEeFF和DdEeff的两种豌豆杂交,在三对等位基因各自独立遗传的条件下,其子代表现型不同于两个亲本的个体数占全部子代的 ( )
A、7/16 B、3/8 C、5/8 D、9/16
8、将基因型为 AaBbCc 和 AABbCc 的向日葵杂交,按基因自由组合定律,后代中基因型为AABBCC的个体比例应为 ( )
A、1/8 B、1/16 C、1/32 D、1/64
9.设人类的甲病为常染色体基因所控制的遗传病,由A或a基因控制,乙病为伴性遗传病,由B或b基因控制,基因只位于X染色体上。一表现型正常的男子与一正常女子结婚,生下一个具有甲病而无乙病的男孩和一个具有乙病而无甲病的男孩。
(1)写出这个家系各成员的基因型:父亲: ;母亲: ;甲病男孩: ;乙病男孩: 。
(2)该夫妇生第三胎,孩子得一种病的几率是 ,得两种病的几率是 。
(3)该夫妇生第三胎是两病均患的男孩的几率是 。
10.在一个远离大陆且交通不便的海岛上,居民中有66%为甲种遗传病(基因为A、a)致病基因携带者。岛上某家族系谱中,除患甲病外,还患有乙病(基因为B、b),两种病中有一种为血友病,请据图回答问题:
(1)____病为血友病,另一种遗传病的致病基因在______染色体上,为_____性遗传病。
(2)Ⅲ—13在形成配子时,在相关的基因传递中,遵循的遗传规律是:______________。
(3)若Ⅲ—11与该岛一个表现型正常的女子结婚,则其孩子中患甲病的概率为_________。
(4)Ⅱ—6的基因型为____________,Ⅲ—13的基因型为__________。
(5)我国婚姻法禁止近亲结婚,若Ⅲ—11与Ⅲ—13婚配,则其孩子中只患甲病的概率为____,只患乙病的概率为______;只患一种病的概率为_____;同时患有两种病的概率为________。
11.人类的卷发对直发为显性性状,基因位于常染色体上。遗传性慢性肾炎是X染色体显性遗传病。有一个卷发患遗传性慢性肾炎的女人与直发患遗传性慢性肾炎男人婚配,生育一个直发无肾炎的儿子。这对夫妇再生育一个卷发患遗传性慢性肾炎的孩子的概率是( )
A.1/4 B.3/4 C.1/8 D. 3/8
(五)、遗传规律与细胞分裂相结合的题型
1 某生物的基因型为AaBb,已知Aa和Bb两对等位基因分别位于两对非同源染色体体上,那么该生物的体细胞在有丝分裂的后期,基因走向是 ( )
A A与B走向一极,a与b走向一极 B A与b走向一极,a与b走向一极
C A与a走向一极,B与b走向一极 D 走向两极的均为A、a、B、b
2.粗糙型链孢霉属于真菌类中的子囊菌,它是遗传分析的好材料。它在繁殖过程中,通常由单倍体菌丝杂交成二倍体合子,合子先进行一次减数分裂后,再进行一次有丝分裂,最终形成8个孢子。已知子囊孢子大型(R)对小型(r)显性,黑色(T)对白色(t)显性。下图表示某一合子形成子囊孢子的过程。请回答:
(1)该合子的基因型是 。
(2) 子囊孢子2、4、6、8的形成是由于 的结果。
(3) 子囊孢子3、5的基因型分别是 。
3.人类白化病由基因a控制,色盲由基因b控制,据下图分析:
(I是白化色盲)
①I的性别是 。
②在下面的三个图中分别画出C、D、G三个细胞的染色体示意图,并注明相关基因。
③若这对夫妇生下了孩子H,则H的基因型为 ,表现型为 (要求指出性别)
④该对夫妇所生子女中,白化病色盲男孩概率为 。
⑤若该对夫妇生下了一唐氏综合症孩子(第21号染色体多一条)H,则这个孩子的染色体组成可表示为(常染色体用I表示) 。
4.一对表现型正常的夫妇,生了一个孩子既是红绿色盲又是Klinefelter综合症(XXY型)患者,那么病因 ( )
A.与母亲有关 B.与父亲有关 C.与父母亲都有关系 D.无法判断
(提示:该小孩的性染色体组成是XXY,同时又是色盲,其基因型只可能是什么?)
5.父亲正常,母亲患红绿色盲,生了一个性染色体为XXY的不色盲儿子。该儿子多出的X染色体最可能来自( )
A.卵细胞 B.精子 C.精子或卵细胞 D.精子和卵细胞
(六)、与植物个体发育相结合的题型
(总提示:被子植物双受精时,“同一个胚囊内”产生的卵细胞和两个极核的基因相同;两个精子的基因型相同,例如:如果已知卵细胞的基因型是Ab,那么两个极核的基因也是Ab、Ab)
1 豌豆豆荚绿色对**是显性,子叶**对绿色是显性。现把绿色豆荚、绿色子叶豌豆的花粉授给纯合的**豆荚、**子叶的豌豆,该植株所结出的豆荚的颜色、子叶颜色分别是
A 绿色豆荚、绿色子叶 B**豆荚、绿色子叶
C绿色豆荚、**子叶 D**豆荚、**子叶
2.一株纯黄粒玉米和一株白粒玉米相互授粉杂交,比较这两个植株种子发育中的胚和胚乳细胞的基因型,结论是
A胚的不同,胚乳细胞的相同 B胚的相同,胚乳细胞的不同
C胚和胚乳细胞的基因型相同 D胚和胚乳细胞的基因型都不同〔答案〕B
3.番茄中红果对黄果为显性。让黄果植株作母本,接受红果植株的花粉,受精后所结果实的颜色是
A红黄之比为3:1 B全为红色 C红黄之比为1:1 D全为**
4.一株白粒玉米(aa)接受红粒玉米(AA)的花粉,所结的种(果)皮细胞、胚细胞、胚乳细胞、极核细胞的基因型依次是( )。
AAa、AA、Aa、aa B aa、Aa、Aaa、a C aa 、Aa、AAa、a D Aa、Aa、Aaa、a
5.让基因型为Aa和AA的玉米间行种植,所结果实中胚乳的基因型可能是( )
①AAa ②aaa ③Aaa ④AAA ⑤AA ⑥Aa
A.①③⑤⑥ B.①②③④ C.①③④ D.③④
6.桃的果实成熟时,果肉与果皮粘连的称为粘皮,不粘连的称为离皮;果肉与果核粘连的称为粘核,不粘连的称为离核。已知离皮(A)对粘皮(a)为显性,离核(B)对粘核(b)为显性。现将粘皮、离核的桃(甲)与离皮、粘核的桃(乙)杂交,所产生的子代出现4种表现型。由此推断,甲、乙两株桃的基因型分别是
A AABB、aabb B aaBB、Aabb CaaBB、Aabb D aaBb、Aabb
7.豌豆灰种皮(G)对白种皮(g)为显性,黄子叶(Y)对绿子叶(y)为显性。每对性状的杂合子(F1)自交后代(F2)均表现3:1的性状分离比。则下列统计符合上述分离比的是
A.Fl植株种皮颜色的分离比 B.F2植株种皮颜色的分离比
C.F2植株子叶颜色的分离比 D.Fl和F2种皮颜色的分离比
8.基因型为AABB的桃树做母本,基因型为aabb的桃树做父本,授粉后,结出果实中胚细胞、胚乳细胞、果皮细胞的基因型依次是
A.AaBb AaBb AaBb B.AaBb AAaBBb AABB
C.AaBb AaaBBb AABB D.AAbb aaBB AaBb
答案:(四)、遗传概率的求算
1、D 2.C 3.D 4.C 5、D 6、B 7、A 8、C
9.(1)AaXBY;AaXBXb;aaXBY;AAXbY或AaXbY (2)3/8;1/16; (3)1/16
10.(1)乙 常 隐 (2)基因的自由组合定律 (3)11% (4)AaXBXb aaXbXb
(5)1/6 1/3 1/2 1/6 11.D
(五)、遗传规律与细胞分裂相结合的题型
1 D 2.(1)RrTt (2)有丝分裂 (3)RT和rt 3.①男 ②略 ③AAXBXB 女性正常 ④1/16 ⑤45I+XX或45I+XY 4.A 5.B
(六)、1 B 2.B 3.D 4.B 5.B 6.D 7.B 8.B
(七)、几种特殊的遗传类型
1.复等位基因
1.在人类群体中,发现决定Rh血型的等位基因共有18种之多,但对每个人则仍然只有其中的两个基因成员。如果以18种等位基因计算,则人类Rh血型基因型会有多少种
A18种 B153种 C171种 D342种
2.IA、IB、i三个等位基因控制ABO血型且位于常染色体上,色盲基因b位于X染色体上。请分析下面的家谱图,图中有的家长和孩子是色盲,同时也标出了血型情况。在小孩刚刚出生后,这对夫妇因某种原因调错了一个孩子,请指出调错的孩子是 ( )A.1和3 B.2和6 C.2和5 D.2和4
2.单性生殖
1.一雌蜂和一雄蜂交配产生F1代,在F1代雌雄个体交配产生的F2代中,雄蜂基因型共有AB、Ab、aB、ab四种,雌蜂的基因型共有AaBB、AaBb、aaBB、aaBb四种,则亲本的基因型是 ( )
A.aabb×AB B.AaBb×Ab C.aaBB×Ab D.AABB×ab
2.蜜蜂是具有社会性行为的昆虫。一个蜂群包括一只蜂王、几只雄蜂和众多工蜂。蜂王专职产卵,雄蜂同蜂王交尾,工蜂负责采集花粉、喂养幼虫、清理蜂房等工作。请回答下列问题:
(1)蜂王、雄蜂和工蜂共同生活,各司其职,这种现象称为____________。(2)未受精卵发育成雄峰,受精卵发育成雌性的蜂王或工蜂,这表明蜜蜂的性别由_____________ 决定。
(3)研究人员发现了工蜂清理蜂房行为不同的两个蜂群,分别称为“卫生”蜂(会开蜂房盖、能移走死蛹)和“非卫生”蜂(不会开蜂房盖、不能移走死蛹)。为研究工蜂行为的遗传规律,进行如下杂交实验:
P: “非卫生”蜂的蜂王ד卫生”蜂的雄蜂
↓(配子的染色体数目不减少)
F1 “非卫生”蜂
测交 _______________×______________的雄蜂
↓
测交后代 “非卫生”蜂 新类型Ⅰ 新类型Ⅱ “卫生”蜂
(25%) (25%) (25%) (25%)
①“非卫生”蜂的工蜂行为是___________(显性/隐性)性状。
②工蜂清理蜂房的行为是受_______对基因控制的,符合基因的_____________定律。判
断依据是___________________________________。
③本实验中测交选择了_____________作母本与____________的雄蜂交配。
④测交后代中纯合体的表现型是___________________________________,新类型Ⅰ的表现型是__________ _______________________。
⑤“卫生”蜂的工蜂会开蜂房盖、能移走死蛹的行为属于_____________行为。
3.不完全显性
1.猫的黑毛基因B和黄毛基因b在X染色体上,BB、bb和Bb分别表现黑色、**和虎斑色。有一雌猫生下4只小猫,分别为黑毛雄猫、黄毛雄猫、黑毛雌猫和虎斑雌猫。其亲本组合应是 ( )
A.黑毛雄猫×黄毛雌猫 B.黑毛雄猫×虎斑雌猫
C.黄毛雄猫×黑毛雌猫 D.黄毛雄猫×虎斑雌猫
2.英国遗传学家贝特生(Bateson)和潘耐特(Punnett)在研究鸡冠形状的遗传过程中发现:以蔷薇冠的鸡与豌豆冠的鸡杂交,F1代全部表现为胡桃冠鸡,F1相互交配,F2中出现:胡桃冠:蔷薇冠:豌豆冠:单片冠=9:3:3:1。试回答:
(1)根据F2表现型及比例,胡桃冠鸡的出现最可能是因为___________________________ 。单片冠鸡的基因型可表示为____________(等位基因符号自设)
(2)试以棋盘式遗传图解解释这一遗传现象。
(3)若让F2中蔷薇冠鸡相互交配,则后代表现型及比例为:_____________。
4.致死基因
1.如果在一个种群中,基因型AA的比例占25%,基因型Aa的比例为50%,基因型aa的比例占25%。已知基因型aa的个体失去求偶和繁殖的能力,则随机交配一代后,基因型aa的个体所占的比例为 ( )
A.1/16 B.1/9 C.1/8 D.1/4
2.某种鼠中,毛的**基因Y对灰色基因y为显性,短尾基因T对长尾基因t为显性,且基因Y或T在纯合时都能使胚胎致死,这两对基因是独立分配的。现有两只**短尾鼠交配,它们所生后代的表现型比例为
A.9∶3∶3∶1 B.3∶3∶1∶1 C.4∶2∶2∶1 D.1∶1∶1∶1
(2)回答下列问题:
①真核生物基因的编码区中能够编码蛋白质的序列称为 ,不能够编码蛋白质的序列称为 。
②一般来说,如果你知道了某真核生物的一条多肽链的氨基酸序列,你能否确定其基因编码区的DNA序列?为什么?
给我QQ吧,这儿发不了这么多
俗话说,“龙生龙,凤生凤,老鼠的儿子会打洞”,“种瓜得瓜,种豆得豆”,这些都是遗传。生物为什么会遗传?拿人来说,最初仅仅是父亲的一个精细胞和母亲的一个卵细胞,结合在一起,一步一步就发育成了胚胎、婴孩,发育成了儿童、成人。下一代和上一代之间的物质联系仅仅是那么两个细胞。那么一丁点儿的物质联系就足以确定下一代在外貌、体质等方面酷似父母。多少年来,人们一方面赞美大自然的神奇造化,一方面苦苦思索:生物遗传到底是怎样进行的呢?
进入20世纪中叶,一批批在遗传学领域里辛勤耕耘的科学家有了收获,这个问题的答案开始清晰起来,生物的遗传物质是DNA。DNA的正式名称叫做脱氧核糖核酸,它隐藏在染色体内。染色体是细胞的主要成分(低等的原核细胞例外),而DNA则是染色体的核心部分,是染色体的灵魂。
DNA直接控制着细胞内的蛋白质合成,细胞内的蛋白质合成与细胞的发育、分裂息息相关。细胞如何发育、如何分裂决定着生物的形态、结构、习性、寿命……这些统称为遗传性状。DNA就通过这样的途径来控制生物的遗传。当然,这是最简略的说法。
早在发现DNA之前,一些生物学家推测生物细胞内应该存在着控制遗传的微粒,并把它定名为基因。现在人们清楚了,基因确确实实存在着。一个基因就是DNA的一个片段,是DNA的一个特定组成部分。一个基因往往控制着生物的一个遗传性状,比如,头发是黄还是黑,眼睛是大还是小,等等。准确地说,一个遗传性状可以由多个基因共同控制,一个基因可以与多个遗传性状有关。
低等动物噬菌体的DNA总共只有3个基因,大肠杆菌大约有3000个基因,而人体一个细胞的DNA中有大约10万个基因。
DNA是由四种核苷酸联结而成的长链。这四种核苷酸相互之间如何联结,这条长链折叠成什么样的立体形状,这两个问题在本世纪40年代曾难倒了许许多多有志于此的研究者。终于,在1954年,两位美国科学家找到了正确的答案,建立了令人信服的模型——DNA是由两条核苷酸链平行地围绕同一轴盘曲而成的双螺旋结构,很像是一把扭曲的梯子。两条长链上的核苷酸彼此间一一结成对子,紧紧联结。螺旋体每盘旋一周有10对核苷酸之多,而一个基因大约有3000对核苷酸。
DNA双螺旋结构的发现是生命科学史上一件划时代的大事。标志着现代分子生物学及分子遗传学的诞生,它对生物的遗传规律提供了准确、完善的解释,是人们揭开遗传之谜的钥匙。
那么,遗传信息又是怎样从DNA反映到象征性状表现的蛋白质上的呢在DNA双螺旋结构的基础上,人们研究了DNA的复制、转录和翻译过程,提出了中心法则。指出DNA解开双链,通过自身复制实现遗传信息忠实的倍增复制;然后通过转录将遗传信息赋予一种信使——mRNA;mRNA在核糖体内通过一种转移核糖核酸分子(tRNA)将氨基酸搬运到身边,按遗传密码的要求组装成蛋白质。这样,遗传就实现了从DNA到蛋白质的“流动”。
据图可知,父母都为患者生下无病子女,无中生有为显形,且父母都是杂合子。据图2,若为x染色体隐形遗传病,则3基因型为X^B Y,4为X^B X^b,则3和4不可能生出正常女孩子,所以该遗传病为常染色体。所以5和7的基因型都为bb,两人婚配后不会生出患病孩子。因为父母的基因型都为Bb,所以孩子的基因型1/4为BB,1/2为Bb,1/4为bb,而6和8都患病,所以6和8的基因型1/3为BB,2/3为Bb,生出无病子女的概率为2/3×2/3×1/4=1/9,则患病孩子的概率为1-1/9=8/9 所以答案选A望采纳
遗传信息( geic information ) 指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序,或指核苷酸的排列顺序,DNA中的脱氧核苷酸、RNA中的核糖核苷酸的排列顺序。
基本介绍 中文名 :遗传信息 外文名 :geic information 起始时间 :1866年 主要作用 :控制生物遗传性状。 研究领域,种类,遗传传递分类,起源,凝固事件假说,立体化学假说,共进化假说,ATP中心假说,综合进化假说,其它假说, 研究领域 遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息,即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。 在1866年首先是由GJMendel(1866)的研究形成了概念,即相应于生物各种性状的因素(称为基因)中包含着相应的信息(以后GBeadle等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据OTAvery等(1944)进行的转化实验,以及AHershey和MChase(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,1960年已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。 种类 基因中脱氧核苷酸种类、数目和排列顺序的不同,决定了遗传信息的多样性。 遗传传递分类 生物体遗传信息的传递的几种类型; 遗传信息的流动遵循下列规律 中心法则及其补充内容告诉了我们遗传信息的流动方向。其分解过程包含了如下6点:DNA的复制,遗传信息流动方向由DNA→DNA;DNA的转录,遗传信息流动方向由DNA→RNA;翻译,遗传信息流动方向由RNA→蛋白质;RNA的复制,遗传信息流动方向由RNA→RNA;RNA的逆转录,遗传信息流动方向由RNA→DNA;蛋白质的复制,遗传信息流动方向由蛋白质→蛋白质。但是究竟在生物体中遗传信息的传递应该包含其6点内容中的几种呢?不同类型的生物,遗传信息的传递过程也有所差异。生物体遗传信息的传递大致分为如下类型: DNA复制型 在DNA复制型的生物中,生物体的遗传信息流动包含3点:DNA的自我复制,遗传信息流动方向由DNA→DNA;DNA的转录和翻译,遗传信息流动方向由DNA→RNA→蛋白质。这种类型的生物主要针对地球上绝大多数的动植物和噬菌体病毒等。 RNA复制型 在RNA复制型的生物中,生物体的遗传信息流动包含2点:RNA的自我复制,遗传信息流动方向由RNA→RNA;翻译,遗传信息流动方向由RNA→蛋白质。这种类型的生物主要针对植物病毒如菸草花叶病毒和动物病毒如脊髓灰质炎病毒等。也有些遗传信息的流动只有1种:RNA的自我复制,遗传信息流动方向由RNA→RNA;这种类型的生物主要针对SARS病毒,流感病毒等。 RNA逆转录型 在RNA逆转录型的生物中,生物体的遗传信息流动包含3点:RNA的逆转录,遗传信息流动方向由RNA→DNA;转录,遗传信息流动方向由DNA→RNA,翻译,遗传信息流动方向由RNA→蛋白质。这种类型的生物主要针对致癌病毒和导致爱滋病的人体免疫缺陷病毒(HIV)。 蛋白质复制型 在蛋白质复制类型的生物中,生物体的遗传信息流动包含1点:蛋白质的复制,遗传信息流动方向由蛋白质→蛋白质;这种类型的生物2000年以前只发现一种即盛行欧美的疯牛病病毒(朊病毒)。 起源 遗传信息是由三联体密码子记载的,因此遗传信息的起源归根结底就是密码子的起源问题。迄今为止,提出了若干假说。这些学说分别从偶然性、化学相互作用、协同演化、生化系统起源以及综合作用等不同视角探讨了遗传密码子起源的可能途径,特别是以生化系统构建为目的的从能量转化到信息化的演化机制值得关注。 凝固事件假说 克里克(Francis Crick)提出凝固事件假说(frozen aident hypothesis),认为密码子与胺基酸的关系是在某一时期固定的,之后很难再被改变。现在所有的生物几乎使用着同样一套密码似乎支持这一假说,这也表明,所有生物起源自单一的共同祖先(Crick 1968)。这推测了演化事件的重要时间节点。 立体化学假说 韦斯(Carl Richard Woese)提出了立体化学假说(stereochemical hypothesis),认为胺基酸与它们相对应的密码子有选择性的化学结合力,即遗传密码的起源和分配与RNA和胺基酸之间的直接化学作用密切相关,或者说,密码子的立体化学本质取决于胺基酸与相应的密码子之间物理和化学性质的互补性(Woese et al 1966)。这可能是密码子起源的一个重要化学机制。 Polyansky等(2013)通过实验和计算发现,mRNAs中不同核酸碱基的密度分布,非常类似于它们所编码的蛋白质中这些相同核酸碱基的胺基酸亲电子密度分布,遗传密码进行了高度最佳化,以最大化这种匹配。 共进化假说 王子晖(J Tze-Fei Wong)提出了共进化假说(co-evolution hypothesis),认为密码子系统有原始胺基酸形成的前生物代谢途径的印迹,因此可以从胺基酸代谢途径发现密码子的演变过程,即密码子的进化与胺基酸生物合成的进化是并列的。该假说认为,胺基酸和相应编码的忠实性反映了胺基酸生物合成路径的相似性,并非物理化学性质的相似性(Wong 1975)。这推测了密码子起源的一种可能路线,但是,从简单的原料合成各种胺基酸可能是发生在前生命演化末期的事情了。 ATP中心假说 谢平(2016)提出了ATP中心假说(ATP-centric hypothesis),认为遗传密码子是生化系统的一部分,因此,必须与生化系统的演化相关联,而生化系统的核心是能量载体——ATP(各种生化循环,如卡尔文循环、糖酵解和三羧酸循环等,均与ATP相耦联),它是光能转化成化学能的唯一终产物,它可以衍生出其它核苷酸,这些核苷酸可以自身缩合成核酸。ATP可活化胺基酸,为多肽链的缩合提供了能量基础。因此,只有ATP才能建立起核酸和蛋白质之间的联系。 ATP中心假说示意图 综合进化假说 Knight等(1999)提出了综合性假说,认为遗传密码是由选择(selection)、历史(history)和化学(chemistry)三个因素在不同阶段起作用的。该假说认为,在遗传密码起源初期,可能主要是胺基酸和密码子之间的直接相互作用来决定胺基酸的编码;在新胺基酸的引入和密码子扩展阶段,共进化作用可能占据主导地位;而随着tRNA的进化和蛋白质的功能增加,逐渐去除了胺基酸和密码子的直接相互作用,密码子在不同尺度上的交换在某些程度上允许通过密码子的重新分配进行最佳化。 其它假说 1981年艾根提出了试管选择(in vitro selection)假说,1989年英国化学家奥格尔(Leslie Eleazer Orgel)提出了解码(decoding)机理起源假说,1988年比利时细胞生物学和生物化学家杜维(Christian de Duve,1974年获诺贝尔生理学或医学奖)提出了第二遗传密码(second geic code)假说。 英国巴斯大学的Wu等(2005)推测,三联体密码从两种类型的双联体密码逐渐进化而来,这两种双联体密码是按照三联体密码中固定的碱基位置来划分的,包括前缀密码子(Prefix codons)和后缀密码子(Suffix codons)。不过,也有人推测三联体密码子是从更长的密码子(如四联体密码子quadruplet codons)演变而来,因为长的密码子具有更多的编码冗余从而能抵御更大的突变压力(Baranov et al 2009)。 2007年中国科学院北京基因组研究所的肖景发和于军(2007年)提出了遗传密码的分步进化假说(stepwise evolution hypothesis),认为最初形成的遗传密码应该仅仅由腺嘌呤A和尿嘧啶U来编码,共编码7个多元化的胺基酸,随着生命复杂性的增加,鸟嘌呤G从主载操作信号的功能中释放出来,再伴随着C的引入,使遗传密码逐步扩展到12,15和20个胺基酸(肖景发和于军2009)。 厦门大学的有机化学家赵玉芬(1994-1996年)也曾提出核酸与蛋白共同起源的观点,认为“磷是生命化学过程的调控中心”,因为磷酰化胺基酸能同时生成核酸及蛋白,又能生成LB-膜及脂质体。她认为,原始地球火山频发,焦磷酸盐、焦磷酸脂类化合物容易在地表积累,其P—O—P键含有的能量,通过与胺基酸形成P—N键,最终转移到肽键和核苷酸的磷酸二酯键中。她推测,磷酰化胺基酸在同时生成蛋白质和DNA/RNA的过程中,蛋白质与DNA/RNA可以通过磷酰基的调控作用相互影响,从而产生了原始密码子的雏形,并进一步进化到遗传密码的现代形式。但问题是,磷酰化胺基酸为何要导演核酸和蛋白质的共进化故事呢? 也有将关于密码子起源的各种学说分为这样四类的:化学原理(Chemical principles)、生物合成扩展(Biosynthetic expansion)、自然选择(Natural selection)和信息通道(Information channels)。根据信息理论研究中的率失真模型(rate-distortion models)推测,遗传密码子的起源取决于三种相互冲突的进化力量的平衡:对多样的胺基酸的需求、抵御复制错误以及资源最小成本化(Freeland et al 2003,Sella and Ardell 2006,Tlusty 2008,)。
高一生物学遗传知识点整理
本文2023-09-22 01:11:47发表“资讯”栏目。
本文链接:https://www.lezaizhuan.com/article/11192.html